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The paracaspase MALT1 cleaves HOIL1 reducing
linear ubiquitination by LUBAC to dampen
lymphocyte NF-kB signalling
Theo Klein1,2,3,*, Shan-Yu Fung4,5,*, Florian Renner6,*,w, Michael A. Blank7, Antoine Dufour1,2, Sohyeong Kang5,8,

Madison Bolger-Munro9, Joshua M. Scurll10, John J. Priatel5,8, Patrick Schweigler6, Samu Melkko6,

Michael R. Gold9, Rosa I. Viner7, Catherine H. Régnier6,**, Stuart E. Turvey4,5,** & Christopher M. Overall1,2,3,**

Antigen receptor signalling activates the canonical NF-kB pathway via the CARD11/BCL10/

MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination.

The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying

lymphocyte responses in NF-kB activation and in B-cell lymphoma subtypes. To identify new

human MALT1 substrates, we compare B cells from the only known living MALT1mut/mut

patient with healthy MALT1þ /mut family members using 10-plex Tandem Mass Tag TAILS

N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly

complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor

microclusters and signalosomes. Late in the NF-kB activation cycle HOIL1 cleavage

transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-kB

activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a

positive and negative pleiotropic regulator of the human canonical NF-kB pathway—first

promoting activation via the CBM—then triggering HOIL1-dependent negative-feedback

termination, preventing reactivation.
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L
inear ubiquitin chains, assembled by peptide bond linkage of
the ubiquitin Met1 a-amine to the C-terminal glycine of a
proximal ubiquitin, are a recently recognized topographic

form of polyubiquitination. This modification is highly associated
with anti-inflammatory responses1, nuclear factor-kappa B
(NF-kB) activation and protection from tumour necrosis factor
receptor superfamily-mediated apoptosis2. Linear ubiquitination
E3 ligase activity uniquely resides in heme-oxidized IRP2
ubiquitin ligase (HOIL1)-interacting protein (HOIP). Full HOIP
activity requires HOIL1 (refs 3,4) and Shank-associated RH
domain interactor (SHARPIN)5,6 to activate and stabilize HOIP
to form the linear ubiquitin chain assembly complex (LUBAC)7,8.
The linear chain deubiquitinase OTULIN also reversibly
associates with HOIP9,10. Tumour necrosis factor-, CD40L- and
IL-1b-induced canonical NF-kB activation requires specific,
high-affinity binding of NF-kB essential modulator (NEMO) to
proteins modified by linear ubiquitin at cell membrane-anchored
receptor signalosomes1,11–13. Although the importance of
LUBAC for NF-kB signalling is highlighted by germline and
somatic mutations in LUBAC genes resulting in primary
immunodeficiency diseases or in lymphomagenesis driven by
NF-kB (refs 14–16), HOIP catalytic activity can be dispensable
for B-cell receptor signalling17. Thus, regulation of LUBAC
assembly, activity and inactivation remains ill defined.

As a central regulator of innate and adaptive immunity, the
NF-kB pathway integrates signals converging from a range of cell
surface and intracellular pattern recognition receptors, leading
to rapid nuclear translocation of the transcription factor NF-kB
(ref. 18). A key convergence point in the NF-kB pathway is the
CARD11/BCL10/MALT1 (CBM) signalosome, which consists of

the caspase recruitment domain-containing protein 11
(CARD11), B-cell lymphoma/leukaemia 10 (BCL10) and a
cysteine protease, mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1)—the only human
paracaspase19. The CBM signalosome rapidly transduces
receptor engagement to the canonical IkB kinase (IKK)
complex, consisting of IKKa, IKKb and IKKg/NEMO subunits.
Linear ubiquitination of NEMO is required for phosphorylation
of IkBa by the IKK complex11. Phospho-IkBa is then rapidly
Lys48-polyubiquitinated, initiating proteasomal degradation and
allowing free NF-kB to translocate to the nucleus. Here it
transcribes a tightly controlled program of proinflammatory
genes and negative regulators of apoptosis (Fig. 1a). The
importance of the CBM in immunity is revealed by the
profound disruption in T- and B-cell receptor signalling
in human and mouse genetic deficiencies for all the CBM
components19–25.

In addition to mediating essential protein scaffolding functions
required for transducing NF-kB signalling, MALT1 indirectly
enhances NF-kB signalling and cell responses by cleaving and
inactivating a limited repertoire of proteins that downregulate the
canonical NF-kB pathway including the NF-kB subunit RelB26

and two deubiquitinases, A20 (ref. 27) and cylindromatosis
protein (CYLD), which also cleaves linear ubiquitin28. In T-cell
receptor responses MALT1 autoproteolytic cleavage promotes
NF-kB signalling29, whereas cleavage of BCL10 regulates T-cell
adhesion30. The cleavage of two messenger RNA-binding
proteins, the RNAse Regnase-1 (ref. 31) and Roquin32,
stabilizes T-cell receptor-induced messenger RNAs. Although
B-cell regulation by MALT1 is less understood, the functionality
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Figure 1 | Defective NF-jB activation in MALT1mut/mut B cells. (a) Simplified diagram showing the central role of the CARD11/BCL10/MALT1 (CBM)

complex in B- and T-cell receptor controlled canonical NF-kB signalling pathway. (b) Family pedigree of the MALT1 genetic mutation. (c) Immunoblots

of MALT1 before and after stimulation with PMA/ionomycin for 2 and 4 h in immortalized B cells from the MALT1-(Trp580Ser) homozygous daughter

(mut/mut), the heterozygous brother (þ /mut B) and mother (þ /mut M), N¼ 11. b-Actin, loading control. (d) NF-kB activation deficiency in B cells of

patient (mut/mut) and mother (þ /mut M) after PMA/ionomycin stimulation was shown by IkBa degradation (left) and phosphorylation of the p65

subunit of NF-kB (p-p65; right), mean±s.d. Bonferroni post-test after two-way analysis of variance: *Po0.05; **Po0.01; ***Po0.001; number of

quantified experiments (N¼ 3), total numbers of times this was observed (N¼ 12).
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Figure 2 | N-terminal TAILS proteomics investigation of patient and control B cells reveal HOIL1 as a MALT1 substrate. (a) 10-plex TMT labelling

scheme for TAILS and preTAILS shotgun proteomics analyses of immortalized B-cell lysates from the MALT1 mutant patient (mut/mut) and heterozygous

brother (þ /mut B) and mother (þ /mut M) controls after 2 and 4 h stimulation with PMA/ionomycin (PMA/Iono) or solvent (control; N¼ 2). Peptides

were identified by MS/MS (FDRr1.0%) and quantified by SPS-MS/MS/MS. (b) All unique peptides (including cyclization of glutamine and carry-over of

unblocked peptides), unique proteins and unique N-terminal peptides (N-acetylated and N-TMT labelled) identified by Byonic in the TAILS and shotgun

proteomics analyses at an FDR of 1% at the protein level. Individual peptides were subsequently filtered at a probability 40.99. (c) MS/MS spectrum of
166GPLEPGPPKPGVPQEPGR182, the neo-N-terminal peptide of the carboxy-cleavage product of HOIL1 identified by TAILS. * Represents TMT-labelled

residues. (d) Absolute intensity values of the 10-plex isobaric reporters from the spectrum in c of control (black) and 2 h PMA/ionomycin-stimulated (red)

samples. (e) MALT1-cleavage site in HOIL1 identified by TAILS from the high reporter ratio of the neo-N-terminal peptide (red) comparing þ /mut to mut/

mut samples both before (black bars) and after PMA/ionomycin stimulation (red bars; n¼ 10). The natural protein N-terminal peptide of HOIL1 was

identified by TAILS (red; n¼ 3), whereas the nonprime side peptide of the cleavage site was identified by shotgun proteomics (blue; n¼4). The figure is

representative of independent experiments yielding similar results. * Represents TMT-labelled amino acid; Ac, N-terminal acetylation. (f) Sequence

alignment of the MALT1-cleavage site in HOIL1 with all known MALT1 substrates; m, murine; h, human. Amino acids in all sequences that are identical

(yellow), similar (green) and identical in some (blue) are shown.
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of the CBM executed by MALT1 proteolysis is evident in
lymphomas33,34. Activated B-cell-type diffuse large B-cell
lymphoma carrying activating oncogenic mutations in CARD11
or in the CD79a/b components of the B-cell receptor are
associated with constitutive CBM preassembly and cleavage of
MALT1 substrates, and chronic active B-cell receptor signalling35.
MALT1 overexpression following gene amplification in splenic
marginal zone lymphomas36 or as a fusion protein with cellular
inhibitor of apoptosis-2 (cIAP2) in extranodal marginal zone
B-cell lymphomas35 further highlights MALT1 as an important
drug target for lymphoma37.

Recently, we described the only known living patient in the
world with a genetic MALT1 deficiency38. This now 17-year-old
girl presented with combined immunodeficiency associated with
immune dysregulation caused by a homozygous loss-of-function
mutation in MALT1. Heterozygous family members are healthy
with no immunological disorders. The MALT1 mutation
Trp580Ser breaks a key stabilizing contact of the MALT1
immunoglobulin and catalytic domains, resulting in lower levels
of a less active and less stable MALT1-Trp580Ser mutant protein
causing failure to activate NF-kB in the patient’s T cells38.
Paradoxically, the patient displays constitutive autoinflammatory
responses, particularly affecting her skin and gastrointestinal
tract; indeed, she experienced clinical benefit using anti-
inflammatory corticosteroids38, highlighting the gaps in our
understanding of the role of MALT1 in human immunity. Access
to human cells deficient in MALT1 provides a unique
opportunity to identify new MALT1 substrates in an intact
human system without experimental over- or under-expression.
Using 10-plex Tandem Mass Tags (TMTs), we identify HOIL1
as a MALT1 substrate directly linking MALT1 paracaspase
activity for the downregulation of linear ubiquitination and
eventual cessation of NF-kB signalling in a negative-feedback
mechanism.

Results
TAILS identification of HOIL1 as a new MALT1 substrate. The
search for MALT1 substrates has so far proven intractable by
proteomics, in part due to fastidious MALT1 activation
mechanisms requiring CBM assembly, and in part from a limited,
yet key substrate repertoire that requires high-sensitivity pro-
teomic approaches. MALT1 genetically deficient cells provided
a unique opportunity to identify new substrates in an intact
human system without experimental over- or under-expression.
Immortalized B cells from the patient (MALT1mut/mut; Fig. 1b)
had less MALT1 than from her heterozygous (MALT1þ /mut)
brother and mother, both before and after stimulation by phorbol

12-myristate 13-acetate (PMA)/ionomycin, a strong inducer of
NF-kB (N¼ 11; Fig. 1c). MALT1-Trp580Ser in MALT1mut/mut

B cells was associated with impaired NF-kB activation as evi-
denced by delayed and reduced proteasome degradation of IkBa
and a 450% loss of activated phospho (p)-p65 (N¼ 12 Fig. 1d;
Supplementary Fig. 1). Consistent with the genetic pattern of
homozygous disease inheritance, MALT1-Trp580Ser in the
heterozygous cells did not behave as a dominant-negative protein
in NF-kB activation.

To identify new MALT1 substrates, we used terminal amine
isotopic labelling of substrates (TAILS), a highly sensitive
proteomics approach that enriches and identifies protease
substrates simultaneously with their cleavage sites by tandem
mass spectrometry (MS/MS)39,40. Isobaric 10-plex TMT labelling
blocked protein natural and cleaved neo-N-terminal a-amines in
lysate protein of resting and PMA/ionomycin-activated B cells.
Following trypsin digestion, we simultaneously compared the
TAILS-enriched B-cell N-terminomes from the patient (n¼ 3)
with her mother (n¼ 1) and brother (n¼ 1) as controls, without
or with PMA/ionomycin stimulation for 2 and 4 h (Fig. 2a) to
increase cleaved substrate accumulation for detection. Enabled by
the 10-plex TMT-labelling strategy, this was performed in a single
mass spectrometric analysis to reduce experimental variability.
We also quantified protein changes in the B-cell proteome by
shotgun proteomics (that is, preTAILS analysis). We identified
7,498 unique acetylated or TMT-labelled N-terminal peptides
(peptide false discovery rate (FDR)r1%) in 3,772 proteins
(protein FDRr1%). Even before removing decoy peptides and
false identifications (n¼ 29), the data set had r1 reverse hit per
1,000 peptide spectrum matches (Fig. 2b).

To identify high-confidence MALT1 substrates, we analysed
TMT-labelled cleaved neo-N-termini by high-accuracy TMT
reporter ion ratios using synchronous precursor selection
(SPS)-MS/MS/MS (Supplementary Fig. 2) to reduce peak
interferences41. Substrate winnowing (Supplementary Fig. 3)
identified a MALT1-cleavage site at 165ArgkGly166 in HOIL1.
The neo-N-terminal peptide 166GPLEPGPPKPGVPQEPGR182

identifying the C-terminal HOIL1-cleavage product was
reproducibly identified in multiple peptide spectrum matches
(n¼ 10) in every experiment (Fig. 2c). Importantly, it was
markedly increased after PMA/ionomycin stimulation and was
always present in lower amounts in the MALTmut/mut cells
compared with the MALT1þ /mut cells from both the brother and
the mother (Fig. 2d,e; Supplementary Fig. 4a). Finally, this
cleavage site complies with the consensus site LXP/SRkG of the
known MALT1 substrates (Fig. 2f). The abundance of the HOIL1
natural N terminus (n¼ 5) from the TAILS data and a tryptic

Figure 3 | Validation of HOIL1 as a MALT1 substrate in vitro and in cells. (a) Concentration-dependent in vitro cleavage of recombinant human HOIL1 by

recombinant human MALT1. Cleavage products were identified using anti-C-terminal FLAG and anti-HOIL1 N-terminal antibodies, N¼ 2. (b) Immunoblot

for HOIL1 cleavage after co-transfection of HOIL1 with CBM proteins: oncogenic mutant CARD11-(Leu244Pro)(L/P), BCL10 and MALT1-(FLAG-His6),

or catalytically inactive mutant MALT1-(Cys464Ala)(C/A) in HEK293FT cells (left panel), and effect of substitution by charge conserving cleavage site

mutation HOIL1-(R165K) (right panel). (c) aV5 immunoblot for HOIL1-V5 and cleavage site mutated HOIL1-(Arg165Lys)(R/K)-V5 cleavage by lymphoma

fusion protein cIAP2-MALT1-(WT) or the catalytically inactive cIAP2-MALT1-(Cys464Ala)(C/A) in HEK293FT cells. (d) Cell–cell contact aligned merged

confocal microscopy image slices through the middle of B cells from a normal donor (þ /þ N) and the patient (mut/mut) with and without pretreatment

with soluble a-IgG prior to immobilization on a-IgG/IgM coated coverslips and staining. Monoclonal antibody-labelled HOIL1 (green) and MALT1 (red) are

shown, yellow arrows indicate co-localization. Blue channel, 4,6-diamidino-2-phenylindole (DAPI) nuclear staining. Scale bar, 10mm. Individual laser

channels for three fields are in Supplementary Fig. 6. (e) a-HOIL1 immunoblot for cleavage of endogenous HOIL1 in immortalized B cells from a normal

donor (þ /þ N) and brother (þ /mut B) after PMA/ionomycin stimulation with and without preincubation with MALT1 inhibitor z-VRPR-fmk. N¼ 34.

(f) a�HOIL1 immunoblot for HOIL1 cleavage in PMA/ionomycin-stimulated primary peripheral blood mononuclear cells (PBMCs) from the mother

(þ /mut M), a normal donor (þ /þN) and the patient (mut/mut) with and without preincubation with MALT1 inhibitor z-VRPR-fmk. N¼9. (g) Patient

(MALT1mut/mut) skin haematoxylin and eosin staining of lymphocytic (LC) infiltrates (white arrows) in the upper dermis (D) surrounding vessels, and the

basal layer of the overlying epidermis (E). Immunohistochemistry identified the lymphocytes as CD3þ T cells. (h) a-HOIL1 immunoblot of HOIL1 cleavage

in PMA/ionomycin-stimulated primary CD4þ and CD8þ T cells from the mother (þ /mut M), a normal donor (þ /þ N) and the patient (mut/mut),

N¼ 6. * Represents consistently observed nonspecific band. Tubulin, b-actin: loading controls.
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peptide lying immediately N terminal to the cleavage site from
the preTAILS shotgun data (n¼ 3; Supplementary Fig. 4b,c) was
constant in all samples confirming that the increase in HOIL1
neo-N-terminal peptide was not merely due to differences
in protein abundance after stimulation (Fig. 2e). Hence, with
high-confidence TAILS identified HOIL1 as a new MALT1
substrate with 162LQPRkG166 as the cleavage site.

Previously described substrates of MALT1 were not identified.
This may be explained by cell type specificity of certain protease-
substrate interactions as we analyzed B cells, whereas Roquin and
Regnase-1 are described in literature as substrates in T cell-
specific processes, and LIMA1 and NF-kB-induced kinase
(NIK) are lymphoma-enriched substrates. An alternative
explanation is that several known substrates yield neo-N-termini
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unfavourable to mass spectrometry—either they are too small
(BCL10: TVSR) or too large (for example, A20: GEAYEPLAWNP
EESTGGPHSAPPTAPSPFLFSETTAMKCR; RelB: GAASLSTV
TLGPVAPPATPPPWGCPLGR; and CYLD:GVGDKGSSSHNKP
KATGSTSDPGNR). Furthermore, posttranslational modifica-
tions such as phosphorylation in the neo-N-terminal peptide
region may cause mass shifts that render the peptides elusive to
identification.

MALT1 cleaves HOIL1 in vitro and in cells. In vitro assays in
kosmotropic salts42,43 confirmed HOIL1 as a MALT1 substrate
(Fig. 3a). A concentration-dependent single cleavage of
C-terminal FLAG-tagged HOIL1 (57 kDa) yielded products of
the molecular weight predicted by TAILS—a C-terminal 39-kDa
(C-HOIL1) domain and an N-terminal 18-kDa domain
(N-HOIL1). To validate cleavage in a cellular context, we
established a CBM transfection system in which an active CBM
signalosome was assembled in HEK293FT cells in the absence of
receptor stimulation by coexpressing MALT1 with BCL10 and the
active oncogenic Leu244Pro mutant of CARD11. Cleavage of
known substrates A20, CYLD, BCL10 and RelB (Supplementary
Fig. 5a–d) co-transfected with the CBM confirmed MALT1-
dependent CBM activity. Complete HOIL1 cleavage by the CBM
was shown by coexpressing HOIL1 (Fig. 3b). Cleavage was not
due to excess levels of MALT1 as HOIL1 was also cleaved by
endogenous MALT1 in HEK293FT cells, where endogenous
BCL10 was sufficient to form an active CBM with transfected
CARD11-Leu244Pro (Supplementary Fig. 5e). HOIL1 cleavage
was dependent on MALT1 paracaspase activity—it was not
cleaved by the catalytic inactive MALT1-Cys464Ala mutant
(Fig. 3b, left). A second Arg-Gly bond in HOIL1 (180EPGR-G184)
lacking the nonprime consensus sequence was not cleaved.
Cleavage only occurred at 165ArgkGly166, as a charge conserving
HOIL1-Arg165Lys mutant was noncleavable (Fig. 3b, right).
The very minor amount of C-HOIL1 generated from mutant
HOIL1-Arg165Lys is consistent with weak cleavage at a LyskGly
site in LIMA1 (ref. 44; Fig. 2f). Thus, HOIL1 cleavage is site
specific with no redundant cleavage by other proteases.

The t(11;18)(q21;q21) chromosomal translocation is the most
common translocation found in B-cell lymphomas arising from
mucosa-associated lymphoid tissue. This translocation creates
the fusion protein cIAP2-MALT1 (Fig. 3c), which exhibits
MALT1 proteolytic activity without requiring CBM assembly35.
Constitutively, active cIAP2-MALT1 fusion protein leads to the
cleavage of NIK45 and LIMA1 (ref. 44), and acts as an oncogenic
driver. Transfected cIAP2-MALT1 cleaved HOIL1 in the absence
of CARD11. No cleavage resulted with catalytically inactive
cIAP2-MALT1-Cys464Ala mutant or noncleavable HOIL1-
Arg165Lys (Fig. 3c), revealing that cIAP2-MALT1-mediated
HOIL1 cleavage occurs without the need for CBM assembly.

Reduced HOIL1 cleavage in MALT1mut/mut B and T cells. The
immunological relevance of HOIL1 cleavage by MALT1 was
shown in several ways. First, we demonstrated that endogenous
MALT1 of the CBM, together with HOIL1 of the LUBAC com-
plex, co-localized at the cell membrane following B-cell receptor
engagement by anti-IgG in immortalized B cells from a normal
donor compared with the patient cells. After 2-h stimulation,
HOIL1 was redistributed to the cell membrane, particularly at
B-cell:B-cell contacts as discrete caps (Fig. 3d; Supplementary
Fig. 6).

We next verified cleavage of endogenous HOIL1 by endogen-
ous MALT1 after stimulation of B cells from a healthy donor and
in the same MALT1þ /mut and MALT1mut/mut B-cell lysates
analysed proteomically in multiple replicates (N¼ 34; Fig. 3e).

Cleavage was markedly reduced in the MALT1mut/mut B cells,
with commensurate increases in both of the two molecular weight
forms of intact HOIL1 (refs 7,8). Similarly, cleavage was reduced
by the MALT1-selective inhibitor Z-Val-Arg-Pro-DL-Arg-
fluoromethylketone (z-VRPR-fmk)30 (Fig. 3e) and by the small-
molecule paracaspase inhibitor, mepazine46 (Supplementary
Fig. 7a).

We observed HOIL1 cleavage in fresh PBMCs from a healthy
donor and the heterozygous mother (N¼ 9; Fig. 3f). In contrast,
HOIL1 cleavage was undetectable in MALT1mut/mut PBMCs. Skin
biopsies from the patient revealed dense chronic lymphocytic
infiltrates in the upper dermis surrounding vessels, with focal
extension of the inflammatory infiltrates into the basal layer of
the overlying epidermis (Fig. 3g). Immunohistochemistry identi-
fied these as CD3þ T cells prompting examination of MALT1
activity in T cells. HOIL1 was cleaved after PMA/ionomycin
stimulation in primary CD4þ and CD8þ T cells from a healthy
donor and the MALT1þ /mut brother, but not from the patient
(N¼ 6; Fig. 3h). Thus, cleavage was not an effect of Epstein–Barr
virus immortalization and occurred with endogenous levels of
protease and substrate in normal B and T cells.

MALT1 cleavage of HOIL1 disassembles LUBAC. LUBAC is a
complex of HOIL1, HOIP and SHARPIN formed by interaction
between the ubiquitin-like, ubiquitin-associated and Npl4
zinc-finger domains of the three LUBAC proteins (Fig. 4a).
Neither HOIP nor SHARPIN was cleaved by MALT1 in the
cellular context (Fig. 4b). Thus, HOIL1 is the only LUBAC
subunit that is a MALT1 substrate.

To mechanistically dissect the effect of MALT1 cleavage of
HOIL1 on LUBAC assembly, we coexpressed V5-tagged HOIP
and V5-tagged SHARPIN together with FLAG-tagged N-HOIL1
and FLAG-tagged C-HOIL1 cleavage-product analogues (Fig. 4a).
Expressing N-HOIL1 with C-HOIL1 represents a non-
physiological extreme of complete HOIL1 cleavage, but provides
mechanistic insights into the role of HOIL1 in regulating LUBAC
assembly and linear ubiquitination. Figure 4c reveals that
the N-terminal cleavage product of HOIL1 retains binding
interactions with HOIP: V5-tagged HOIP was pulled down by
anti-FLAG immunoprecipitation of FLAG-N-HOIL1 (lane 2) to a
similar amount as found with full-length FLAG-HOIL1 (lane 1),
but not by immunoprecipitation of FLAG-tagged C-HOIL1
(lane 3). N-HOIL1 alone associated with HOIP—as did N-HOIL1
when expressed with C-HOIL1 as an analogue of HOIL1 cleavage
(lane 4). Thus, C-HOIL1 neither binds nor modulates binding of
N-HOIL1 to HOIP.

We consistently found that HOIP levels were markedly
reduced in the absence of HOIL1 (N¼ 5; Fig. 4c,d, orange
arrowheads)) compared with cells expressing full-length HOIL1
or N-HOIL1 (Fig. 4d). This was not due to unequal transfection
efficiency, but shows that N-HOIL1, like full-length HOIL1,
stabilizes HOIP. Consistent with this model, HOIP was also
reduced when C-HOIL1 alone was expressed with HOIP (N¼ 6),
suggesting that C-HOIL1 disengages from HOIP on cleavage and
does not contribute to HOIP stabilization. However, due to the
lower levels of HOIP in the absence of either HOIL1 or N-HOIL1,
this is not an equivalent experimental set-up. Therefore, we
transfected increasing amounts of HOIP. As shown in Fig. 4d
using anti-V5 pulldowns for V5-tagged HOIP, no C-HOIL1 was
detected by anti-FLAG immunoblotting, even when HOIP was
expressed at equivalent levels using 5� the transfected amount
of HOIP vector. Thus, C-HOIL1 disengages from LUBAC after
MALT1 cleavage.

As HOIP is not cleaved by MALT1 (Fig. 4b), we further
explored the mechanism of HOIP destabilization in the absence
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of HOIL1. MG132, a proteasome inhibitor, revealed the presence
of polyubiquitinated forms of HOIP when expressed alone
(Fig. 4e, lane 1). In contrast, with full-length HOIL1 (Fig. 4e,
lane 2), no high-molecular-weight conjugated forms were present.
Thus, HOIL1 stabilizes HOIP and protects against proteasome-
mediated turnover of HOIP, extending the previous analyses of
the stabilizing influence of HOIL1 on HOIP7,47. Indeed, in
MALT1þ /mut B lymphocytes, endogenous HOIP levels showed a
gradual and persistent decline up to 24 h after PMA/ionomycin
stimulation. This is consistent with the disassembly of LUBAC
executed by MALT1 cleavage of HOIL1 with the gradual
disengagement of HOIL1 cleavage fragments. In contrast, endo-
genous HOIP was unaltered over 24 h in the MALT1mut/mut

B cells having reduced HOIL1 cleavage (Fig. 4f). Thus, LUBAC is
under dynamic control by MALT1-mediated cleavage of HOIL1.
After cleavage, C-HOIL1 releases from LUBAC, whereas
N-HOIL1 can maintain its interaction with HOIP.

HOIL1 cleavage decreases linear ubiquitination by LUBAC.
LUBAC polymerizes linear ubiquitin chains on immune protein
targets. To directly assess the effects of HOIL1 cleavage on linear
ubiquitination, we coexpressed HOIP and SHARPIN with either
HOIL1 or the N-HOIL1 and C-HOIL1 cleavage analogues in the
absence of MALT1. Immunoblotting for linear ubiquitin chains
revealed that coexpression of all three intact LUBAC subunits was
necessary to efficiently generate high-molecular-weight linear
ubiquitin conjugates (Fig. 5a, lane 2), which were virtually
abolished by the combination of N-HOIL1 and C-HOIL1 as an
analogue of fully cleaved HOIL1 (Fig. 5a). The small amount of
linear ubiquitin conjugates is consistent with the less efficient
function of LUBAC observed when HOIP is expressed with
SHARPIN alone1,5. The NZF domain in the C terminus of
HOIL1 binds linear polyubiquitin8 and therefore positions the
nascent linear ubiquitin chains proximal to the HOIP E3 ligase.

With cleavage the NZF domain in C-HOIL1 is detached
from LUBAC reducing LUBAC efficiency. Notably, Lys48-
polyubiquitination of proteins was unaffected by the stable
HOIL1 cleavage fragments, emphasizing the selectivity in
downregulation of linear ubiquitination only (Fig. 5a).

To study the end point of HOIL1 cleavage-induced changes in
linear ubiquitination on NF-kB signalling, we quantified NF-kB
signalling in the presence and absence of linear ubiquitination
using a NF-kB promoter luciferase reporter assay. We found that
intact LUBAC with the associated linear ubiquitination of cellular
proteins stimulated NF-kB transcriptional activity (Fig. 5b). In
contrast, when N-HOIL1 and C-HOIL1 were equally coexpressed
as the analogue of fully cleaved HOIL1, along with HOIP and
SHARPIN, NF-kB promoter activation was lost, coincident with
the reduction in linear ubiquitination (Fig. 5a). Thus, intact
HOIL1 is required for efficient LUBAC-dependent linear
ubiquitination that is needed for NF-kB promoter activation.
Upon HOIL1 cleavage LUBAC is disassembled. This leads to a
cessation of linear ubiquitination that results in downregulation
of NF-kB activation.

We next expressed both LUBAC and active CBM to determine
the effect of MALT1-mediated cleavage of HOIL1 on LUBAC.
Consistent with our previous transfection results, we found that
when both the CBM and LUBAC were present, total linear
ubiquitination was markedly reduced by HOIL1 cleavage (Fig. 5c,
lanes 3 and 5). In contrast, LUBAC activity was maintained
when cells were transfected with catalytically inactive MALT1-
Cys464Ala (Fig. 5c, lanes 4 and 7). Similarly, when the cells were
transfected with noncleavable HOIL1-Arg165Lys, linear ubiquitin
levels were maintained in the presence or absence of active CBM
(Fig. 5c, lanes 8 and 9). Thus, although HOIP is the linear
ubiquitination E3 ligase, we found that the CBM reduces
HOIP/HOIL1-dependent linear ubiquitination and NF-kB
promoter activation that is executed by MALT1 cleavage of
HOIL1.
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MALT1 activity reduces linear ubiquitination in B cells. To
translate these results to lymphocytes, we investigated the impact
of HOIL1 cleavage by MALT1 on LUBAC function in B cells. We
used agarose beads coupled with tandem ubiquitin binding
entities (TUBEs) to enrich for the entire pool of ubiquitinated
proteins. Immunoblotting for linear ubiquitin chains in the
TUBE-enriched fraction revealed multiple linear ubiquitinated
proteins before stimulation in both MALT1þ /mut and
MALT1mut/mut B cells (Fig. 6a, 0 h). Between 30 and 120 min after
PMA/ionomycin stimulation in MALT1þ /mut B lymphocytes,
there was reduced linear ubiquitination of cellular proteins, which
was associated with cleavage of endogenous HOIL1. In the

MALT1mut/mut B cells, both a less pronounced and a delayed
reduction in total linear ubiquitination occurred concurrent with
greatly reduced cleavage of HOIL1 (N¼ 4; Fig. 6a). Importantly,
MALT1 inhibition by z-VRPR-fmk reduced HOIL1 cleavage and
strikingly maintained total linear ubiquitination levels for up to
4 h in MALT1þ /mut B cells (N¼ 6; Fig. 6b) and MALT1þ /mut

and MALT1mut/mut B cells (N¼ 6; Supplementary Fig. 7b). Pro-
tein levels of OTULIN, the linear polyubiquitin deubiquitinase,
were unaltered on PMA/ionomycin stimulation (Supplementary
Fig. 7c), reinforcing the direct linkage between MALT1 cleavage
of HOIL1 and reduced linear ubiquitination.

RIP1 is a substrate of LUBAC and showed a rapid (o15 min)
loss in ubiquitinated forms after stimulation that was then
followed by partial recovery in MALT1þ /mut cells (Fig. 6b). This
pattern matched the markedly reduced levels of multiple linear
ubiquitinated protein conjugates detected by immunoblotting
with anti-linear ubiquitin antibody (Fig. 6b). Importantly,
MALT1 inhibition abrogated both the general protein and
the RIP-specific ubiquitination response to PMA/ionomycin
stimulation demonstrating that MALT1 cleavage of HOIL1
reduces linear ubiquitination of both total proteins and the
LUBAC target, RIP1.

Intriguingly, the initial triggering of NF-kB signalling did not
require MALT1 paracaspase activity, as shown by the similar
initial reduction in IkBa and induction of p-p65 both with and
without inhibitor in both MALT1þ /mut and MALT1mut/mut B
cells (N¼ 6; Fig. 6b; Supplementary Fig. 7b). This suggests that
the scaffolding role of MALT1 is more important than its
proteolytic activity for the initiation of NF-kB signalling. In
contrast, cleavage of HOIL1 by MALT1 decreases linear
ubiquitination of multiple proteins at later time points. Because
RIP1 and NEMO promote NF-kB activation in a manner
that depends on their linear ubiquitination, we posited that
MALT1-dependent cleavage of HOIL1 may limit continued
NF-kB activation. Following an initial 15-min stimulation with
PMA/ionomycin, we re-stimulated again at 2 h, a time point
when linear ubiquitination was greatly diminished. We then
followed cell responses until 4 h (Fig. 6c). Notably, the p-p65
levels did not increase after the second stimulus indicative of no
further NF-kB induction (Fig. 6c). Although only correlative,
these data are consistent with the relative balance in levels of
intact and MALT1-cleaved HOIL1 modulating the degree of
linear ubiquitination and hence degree of NF-kB activation.
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conjugates were calculated as marked.
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Notably, when no linear ubiquitinated protein was present, cells
were rendered refractory to reactivation.

Stimulation of primary lymphocytes reduces linear ubiquitin.
To confirm that the loss of linear ubiquitination after cleavage of
HOIL1 is physiologically relevant, we analysed primary human
lymphocytes. First, we obtained B-cell-rich cell homogenates
from resected paediatric human tonsils. Cells were stimulated
first with anti-IgG/IgM and CD40 ligand, and then with
PMA/ionomycin. HOIL1 cleavage (Fig. 7a) was associated
with a clear decrease in linear ubiquitination 20–30 min after
PMA/ionomycin stimulation in multiple human samples
(N¼ 4; Fig. 7a,b). Moreover, the abundance of several distinct
ubiquitinated forms of NEMO was also decreased coinciding with
the loss of total linear ubiquitination (Fig. 7b).

Since obtaining sufficient numbers of blood-derived primary B
cells for TUBE experiments from the patient was not ethically
possible, we further validated the effect of HOIL1 cleavage on
linear ubiquitination by returning to T cells, which skin biopsy
had shown were dominant in the upper dermis (Fig. 3g). On
PMA/ionomycin stimulation of Jurkat T cells, HOIL1 levels were
reduced; and the role of MALT1 cleavage was confirmed by the
reduced generation of N-HOIL1 with the MALT1 inhibitors
z-VRPR-fmk and Mepazine (Fig. 7c).

To show that cleavage of HOIL1 by MALT1 in T cells is a
downstream consequence of lymphocyte antigen receptor/
co-stimulatory receptor engagement, we incubated primary
CD4þ T cells from healthy donors (N¼ 3) with anti-CD3/
anti-CD28 functionalized beads. T-cell receptor/CD28 engage-
ment stimulated HOIL1 cleavage (Fig. 7d), but to a lesser extent
than the pharmacological PMA/ionomycin stimulation. Thus,
HOIL1 cleavage is a consequence of B- and T-cell stimulation
with PMA/ionomycin and of T-cell receptor engagement.

Next, primary CD4þ T cells from the heterozygous brother
were stimulated with PMA/ionomycin. As with B cells, we
observed a time-dependent decrease in linear ubiquitination
(Fig. 7e) and specifically of NEMO (Fig. 7f). In contrast, total
Lys48-polyubiquitination remained constant on stimulation,
confirming the specificity of the reduction to linear ubiquitination
(Fig. 7e). The loss of linear ubiquitin conjugates, and specifically
of NEMO ubiquitination, was blocked by MALT1 inhibition
(Fig. 7f), emphasizing that this effect in human T cells was
dependent on MALT1 paracaspase activity and cleavage of
HOIL1.

To widen the physiological relevance of our findings,
we showed that HOIL1 cleavage occurred 30 min after
PMA/ionomycin stimulation of primary murine lymph node
CD3þ T cells, but not in knockout mouse cells lacking MALT1
or in cells from catalytic inactive MALT1-Cys/Ala knock-in mice
(Fig. 8a). Therefore, HOIL1 cleavage is not human specific,
emphasizing the broader relevance of HOIL1 as a substrate. In
wild-type murine CD3þ T cells, HOIL1 cleavage occurred 30 min
after stimulation. At this later time, and as shown by the cessation
of the sudden increase in p-IkBa and p-p65, the initial NF-kB
activation at 10 min had ended. We next compared the
scaffolding versus paracaspase activities of murine MALT1 in
NF-kB activation in PMA/ionomycin-stimulated primary murine
lymph node CD3þ T cells. Ten minutes after PMA/ionomycin
stimulation, both the wild-type and catalytic inactive
MALT1-C/A knock-in murine T cells showed similar levels of
induced p-p65 and p-IkBa that was coupled with reduced IkBa.
In contrast, in the absence of MALT1 in Malt1� /� mice, NF-kB
was not activated, whereas phosphorylation of ERK1/2 was
indistinguishable and confirmed cellular activation (Fig. 8a).
Thus, the murine Malt1 knockout and knock-in studies in T cells
confirm the human B-cell MALT1 inhibitor data showing

that MALT1 paracaspase activity was dispensable for NF-kB
activation.

B-cell activation by antigen-presenting cells reduces LUBAC.
In vivo, B cells are often activated by antigen-presenting cells
(APCs) that capture antigens to display on their surface48.
The binding of B-cell receptors to mobile membrane-bound
antigens leads to forming B-cell receptor microclusters that
nucleate signalosome formation and activate downstream
signalling pathways49. Because linear ubiquitin chains act as
scaffolds to recruit and organize signalling proteins50, we asked
whether they accumulate at the B cell:APC contact site
(that is, immune synapse), and specifically at B-cell receptor
microclusters. Primary murine splenic B cells were added to Cos7
APCs that express on their surface a transmembrane form of an
anti-Igk light-chain antibody (that is, surrogate antigen) that
binds to all B-cell receptors51. B cells do not attach to Cos7 cells
not expressing this surrogate antigen. At 10 min after adding B
cells to anti-Igk-expressing Cos7 APCs, puncta of linear ubiquitin
staining were observed at the B cell:APC contact site by spinning
disc confocal microscopy (Fig. 8b). The punctate linear ubiquitin
staining also co-localized with B-cell receptor microclusters,
which were visualized as puncta of the surrogate antigen (Fig. 8c).
Although the linear ubiquitin puncta co-localized with B-cell
receptor microclusters, only a subset of B-cell receptor micro-
clusters was associated with linear ubiquitin. z-Sections through
the centre of the B cell showed that linear ubiquitin conjugates
were found primarily at the B cell:APC contact site, often at
sites where antigens were concentrated at B-cell receptor
microclusters.

Time courses showed that the accumulation of linear
ubiquitin-conjugated proteins at the B cell:APC contact site was
significantly lower (Po0.0001) at 15 and 30 min after adding the
B cells to the APCs than at the 10-min time point (Fig. 8d). Thus,
the time course for the decrease in linear ubiquitination in
primary murine B cells stimulated through the B-cell receptor
matched those for primary human B and T cells (Fig.7). Notably,
we found that MALT1 paracaspase activity was important for
the time-dependent decrease in linear ubiquitination-modified
proteins. Pretreating the B cells with the z-VRPR-fmk inhibitor
significantly delayed the loss of total linear ubiquitination at the
B cell:APC contact site at the 15 and 30 min time points
(Po0.0001; Fig. 8d).

Discussion
Our discovery of a new MALT1 substrate, which was enabled by a
unique patient with genetic MALT1 deficiency, has defined a new
biological role for MALT1. We report a previously unrecognized
yet direct proteolytic connection between the CBM signalosome
and LUBAC (Fig. 8e). By transiently reducing linear ubiquitina-
tion at the lymphocyte antigen receptor microcluster, MALT1
displays temporally separated actions in NF-kB signalling—
initially as a feedforward inducer and then ultimately as a
negative-feedback inhibitor. To date, MALT1 proteolytic activity
has only been proposed to indirectly increase NF-kB activation by
cleavage and removal of negative regulators of the canonical
NF-kB pathway. However, we show that MALT1 also results in a
single specific cleavage in HOIL1, disrupting LUBAC by release of
C-HOIL1, to downregulate linear ubiquitination at the B-cell
receptor microcluster signalosome. The NZF domain in C-HOIL1
binds LUBAC to linear ubiquitin chains and so is key for LUBAC
E3 ligase efficiency. Therefore, HOIL1 cleavage impairs linear
polyubiquitin formation and is associated with reduced LUBAC-
mediated NF-kB activation. Loss of MALT1 proteolytic activity in
the patient lymphocytes and, with failure to cleave HOIL1, led to
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an increase in linear ubiquitination levels. This eventually
rendered the patient with unrestricted B-cell activation leading
to chronic inflammatory responses.

We also observed that triggering of NF-kB signalling did not
require MALT1 paracaspase activity. A similar initial reduction in
IkBa and induction of p-p65 occurred both with and without a
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Figure 8 | MALT1 cleavage of HOIL1 decreases linear ubiquitination in mouse lymphocytes. (a) Immunoblots for N-HOIL1, p-ERK1/2 and NF-kB

signalling proteins (p-IkBa, IkBa and p-p65) in stimulated murine primary lymph node CD3þ T cells derived from wild-type mice, the littermate Malt1� /�

and the Malt1-C/A catalytic inactive mutant knock-in to Malt1� /� , N¼ 2. Tubulin, loading control. * Represents nonspecific band as observed in Jurkat

T cells; ** Represents residual signal from p-ERK1/2 blot; *** Represents nonspecific bands and residual p-ERK1/2 signal. (b) Murine splenic B cells treated

with vehicle (control) or 75 mM MALT1 inhibitor (z-VRPR-fmk) for 30 min were exposed to APCs for the indicated times. z-Slices through the centre of B

cells stained for F-actin (red) and linear polyubiquitin (M1-Ub, green) are shown. Scale bar, 5mm. (c) Representative spinning disk confocal xy slices at the

contact site of three individual primary murine splenic B cells that were added to APCs for 10 min before staining for the anti-Igk surrogate antigen (red)

and M1-linear polyubiquitin (green). White lines show the B-cell periphery at the contact site, as visualized by F-actin staining. Yellow arrowheads show

sites of linear ubiquitin and antigen microcluster co-localization. Scale bar, 5 mm. (d) Normalized linear ubiquitin fluorescence intensity in the xy plane at the

B cell:APC contact site was quantified from images similar to those in c and normalized for the amount of antigen staining at each contact surface. Each dot

represents a single B cell. Blue line depicts the median value of n¼ 91–120 B cells from two independent experiments (N¼ 2). Box shows interquartile

range. ****Po0.0001 using the Mann–Whitney U-test. (e) Scheme depicting normal initiation of NF-kB signalling by B-cell receptor (BCR) microclusters

(green arrows) via MALT1 scaffolding in the CBM and the canonical IkB kinase (IKK) complex, consisting of NEMO/IKKg with IKKa and IKKb subunits.

In the signal amplification stage, MALT1 cleavage removes negative regulators and thereby optimizes NF-kB activation. The late-stage negative-feedback

loop is executed by MALT1 paracaspase activity cleaving HOIL1 in LUBAC (red arrows) to transiently reduce linear ubiquitination of targets including

NEMO/IKKg, hence reducing NF-kB signalling at late time points and is associated with preventing further ongoing NF-kB stimulation.
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MALT1 inhibitor in activation of human B cells and of murine
T cells from wild-type and MALT1-Cys/Ala protease-inactive
knock-in mice. This adds a new layer to our understanding of
the molecular links in CBM complex and LUBAC crosstalk with
NF-kB signalling. Moreover, our results showing first positive and
then negative regulation of NF-kB activation by MALT1 indicate
that therapeutic intervention with MALT1 inhibitors for auto-
immunity or lymphoid neoplasia needs to be considered carefully.

The HOIL1 cleavage site is proximal to Gln185, one of two
germline mutation sites in HOIL1-mutant immunodeficient
patients52 that have clinical overlap with features of the
MALT1mut/mut patient38. Although Nakamura et al.53 reported
HOIL1 cleavage, they did not identify the responsible protease or
the physiological consequences. In primary B and T lymphocytes,
we found reductions in both total protein linear ubiquitination
and levels of the specific target proteins, NEMO and RIP1, on
HOIL1 cleavage. This loss of proteins modified by linear
ubiquitin was blocked by inhibition of MALT1; thereby directly
linking reduced linear ubiquitination with MALT1 paracaspase
activity. In view of the indirect amplification of NF-kB by the
previously described MALT1-cleavage substrates27–32, it was
surprising that MALT1 inhibition did not alter p-p65 and IkBa
levels on initiation of the NF-kB pathway. This is in agreement
with very recent reports also showing the key role of MALT1
scaffolding in NF-kB induction54–56. Indeed, initiation of NF-kB
signalling in MALT1mut/mut B cells was dampened compared with
healthy MALT1þ /mut family members due to disruption of
MALT1 scaffolding caused by low levels of unstable mutant
MALT1-Trp580Ser protein.

The possible involvement of LUBAC-mediated linear
ubiquitination in B-cell receptor signalling was only recently
postulated16,57. As direct induction of linear ubiquitination has
not been previously observed in B-cell receptor signalling and in
view of the rearrangement of linear ubiquitin scaffolds to the cell
membrane-anchored receptor signalosome that we observed, we
posit that ubiquitin scaffolds are essential both proximal and
distal to the CBM complex at early time points after B-cell
receptor engagement. Indeed, we showed co-localization of CBM
and LUBAC at the cell membrane followed by loss of linear
ubiquitinated proteins after B-cell receptor engagement. Hence,
the cleavage of HOIL1 by MALT1 with the subsequent removal
from the signalosome may be another, yet quite different switch
by which B cells regulate NF-kB signalling after B-cell receptor
activation. This negative-feedback mechanism may serve to avoid
undesired processes associated with unrestricted B-cell activation
such as in autoimmunity. Indeed, the reduced ability of the
MALT1mut/mut patient to cleave HOIL1 and disassemble LUBAC
may explain her excessive chronic inflammatory responses that
are a challenging clinical aspect of human MALT1 deficiency19,35.
Through this enhanced understanding of critical interactions
between MALT1 and LUBAC, we now have a mechanistic
explanation for the patient’s seemingly contradictory clinical
phenotype—which encompassed both susceptibility to infection
and exaggerated inflammation due to persistent canonical NF-kB
signalling. Whereas the failure to activate NF-kB quickly and
appropriately during microbial challenge resulted in increased
susceptibility to infections, the reduced ability to cleave HOIL1
and reduce linear ubiquitination is consistent with unrelenting
NF-kB signalling leading to a destructive chronic inflammation
of her skin and gastrointestinal tract that was only partially
controllable with systemic corticosteroid therapy.

The diagnosis and molecular characterization of rare human
primary immunodeficiency diseases plays a critical role in
expanding our understanding of the human immune system
and in the development of new treatments that have applications
beyond immunodeficiency diseases. We used TAILS to directly

study the complex consequences of a genetic MALT1 deficiency
in humans. This contrasts the usual situation where inferences are
drawn by necessity from animal models. HOIL1 is a component
of the LUBAC complex, which catalyses linear ubiquitination of
several important components and regulators of the canonical
NF-kB machinery, including RIP1 and NEMO. By identifying
HOIL1 as a novel MALT1 substrate, we bring functional insight
to CBM/LUBAC crosstalk. From accumulating data and our
present results, we suggest that MALT1 has three temporally
separated roles in canonical NF-kB signalling—for the initial
triggering of NF-kB, MALT1 protease activity is not required for
IKK activation and NF-kB signalling. Rather, MALT1 scaffolding
links the CBM signalosome to the B-cell receptor microcluster,
which we show is co-localized with linear ubiquitin complexes. In
the next time step, MALT1-dependent direct cleavage removes
negative regulators such as RelB, CYLD and A20, and thereby
optimizing NF-kB activation and cellular responses. At later
stages, MALT1 proteolysis invokes an overall negative-feedback
mechanism by decreasing LUBAC function, thereby reducing
linear ubiquitination that contributes to rendering lymphocytes
refractory to undesired ongoing and secondary NF-kB activation
(Fig. 8e). Thereby, MALT1 is a pleiotropic controller of canonical
NF-kB activation.

Methods
Human blood donors and ethics approvals. The University of British Columbia/
Children’s and Women’s Health Centre of British Columbia Research Ethics Board
approved the research protocols for studies on human samples and research was
conducted in accordance with the Declaration of Helsinki. Five members of the
family, including the affected child, her parents and two unaffected siblings, as well
as seven healthy volunteers were enrolled. Tonsil samples were deidentified.
Written informed consent and assent from minors for participation in this study
were obtained.

Primary hematopoietic cell culture. Human PBMCs were isolated from fresh
donor blood samples by Ficoll-Plaque (GE Healthcare Life Sciences) density
centrifugation as described earlier58. Fresh PBMCs (2� 106 cells) were cultured
overnight in complete RPMI 1640 medium supplemented with 10% fetal bovine
serum, 2 mM L-glutamine (all from HyClone Fisher Scientific) and 1 mM sodium
pyruvate (Invitrogen). Cells were stimulated with 50 ng ml� 1 PMA and 1 mM
ionomycin, with or without 1-h pretreatment with the MALT1 inhibitor
z-VRPR-fmk (75 mM, Enzo Life Sciences).

T-cell isolation. Activated primary CD4þ and CD8þ T lymphocytes were
expanded by the following procedure: fresh PBMCs were stained with fluorescent-
conjugated anti-CD4 (RPA-T4) and anti-CD8 (HIT8a) antibodies (both from BD
Biosciences) and sorted using a BD FACSAria flow cytometer (BD Biosciences).
Purified CD4þ and CD8þ T cells (2� 105 cells) were stimulated with phyto-
haemagglutinin (1mg, Sigma-Aldrich), IL-2 (100 U, Novartis) and allogeneic feeder
PBMCs (1� 106 cells, irradiated with 5,000 rad, 50:50 mixture from two donors)
and JY Epstein–Barr virus (EBV)-immortalized lymphoblastoid B cells (2� 105

cells, irradiated with 7,500 rad) in 1 ml complete RPMI medium supplemented
with 2% blood-type AB human serum, 100 U ml� 1 penicillin, 100mg ml� 1

streptomycin, non-essential amino acids and 5 mM b-mercaptoethanol (all from
Life Technologies). The activated CD4þ and CD8þ T cells were cultured for up to
2 weeks and were provided with fresh RPMI medium supplemented with IL-2
(100 U ml� 1) every 2–3 days. Expanded T cells (1� 106 cells) were then cultured
overnight with RPMI 1640 medium before PMA/ionomycin stimulation (2 h),
with or without 1-h pre-treatment with z-VRPR-fmk.

T-cell isolation from murine lymph nodes. To prepare primary murine CD3þ

T cells from 10-week-old male C57Bl/6 (n¼ 2), Malt1� /� (n¼ 2) and Malt1-C/A
(n¼ 2) mice56, lymph nodes were isolated and pooled before homogenization
using 70-mm cell strainers. Subsequently, erythrocytes were lysed in 0.15 M NH4Cl,
10 mM KHCO3, 1 mM EDTA and Pan T cells were purified by MACS negative
depletion (mouse Pan T-cell Isolation Kit II, Miltenyi Biotec). The purity of the
isolated CD3þ T cells was confirmed to be 495% by flow cytometry and the
T cells were cultured in serum-free RPMI 1640 medium until stimulation.
Procedures involving animals were carried out on Experimental Animal Licenses
approved by the Novartis Animal Ethics Board and the Regional Governmental
Authorities of Switzerland.
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B-cell immortalization. Immortalized B cells were established by standard EBV
transformation59. In brief, EBV infections were performed by culturing fresh
PBMCs from the donors with the supernatant from a viral replication-permissive
marmoset cell line B95–8 (VR-1492, ATCC)60. After 24-h incubation, cells were
infected again with EBV and cultured until sufficient B-cell blasts were present.
These were then cultured in complete RPMI 1640 medium (HyClone, Fisher
Scientific) for two passages before any experiments. All experiments on
EBV-immortalized B cells were performed within 20 passages to avoid potential
alteration of the cell phenotype. For immunoblotting analyses, EBV-immortalized
B cells (2� 106 or 4� 106 cells) were stimulated with PMA/ionomycin for up to
4 h, with or without 1-h pretreatment with z-VRPR-fmk. For the restimulation
experiments, MALT1þ /mut cells (2� 106) were stimulated with PMA/ionomycin
for 15 min, and then washed and rested for 2 h before the second PMA/ionomycin
stimulation over time (N¼ 6). All B- and T-cell cultures were mycoplasma
negative.

Preparation of tonsil cell isolates. The University of British Columbia and the
Children’s and Women’s Health Centre of British Columbia Clinical Review Board
(#H06-03256) approved the collection of tonsils from elective surgeries performed
at British Columbia Children’s Hospital. Subsequently, single-cell suspensions
were generated by pressing tissue through filter screens, subjected to Ficoll-Paque
(GE Healthcare) density gradient centrifugation and isolated mononuclear cells
cryopreserved at � 80 �C.

Statistical analysis. A Bonferroni post-test after two-way analysis of variance
was performed for statistical analysis of the difference between response in
heterozygous mother and homozygous patient (N¼ 3). The data met the
assumptions of the test including the dependent variable (that is, protein
expression) being continuous, the two independent variables each consisted of five
time points, and the time points were independent. There was an estimate of
variation within each group of data displayed by the s.d. error bars. The F-test
statistic established that variance was similar between the groups that are
being statistically compared. Statistical analysis of the effect of MALT1 inhibitor
z-VRPR-fmk on linear ubiquitination at the B-cell receptor microclusters was
performed by Mann–Whitney U–test, since data were not normally distributed and
therefore no assumptions about variance were made.

Confocal immunofluorescence. Immortalized B cells (12.5� 106 cells per
millilitre) in RPMI medium plus 10% cosmic calf serum were used unstimulated
or stimulated in suspension for 2 h with 10 mg ml� 1 anti-IgG (Jackson
Immunoresearch Laboratories; 109-005-044) and allowed to settle for 1 h
onto coverslips coated with anti-IgG and anti-IgM (Jackson Immunoresearch
Laboratories; 109-005-003 and 109-005-043, respectively). After fixation with 4%
paraformaldehyde, the cells were permeabilized with 0.5% Triton X-100 in PBS for
5 min and then blocked with 3% bovine serum albumin in PBS for 30 min. Primary
antibodies (1:100) were added for 1 h and visualized with Alexa 488- or Alexa
647-labelled goat anti-mouse IgG or goat anti-rabbit IgG. Monoclonal anti-human
HOIL1 (clone E-2) and anti-human MALT1 (clone EP603Y) antibodies were from
Santa Cruz Biotechnology and Abcam, respectively. Coverslips were treated
with ProLong Gold antifade reagent containing 4,6-diamidino-2-phenylindole
(Molecular Probes). Images were captured using a Nikon C2þ confocal
microscope.

In vitro HOIL1 cleavage assays. Recombinant full-length human MALT1 protein
was expressed and purified43. C-terminal Myc-FLAG-tagged full-length human
HOIL1 was obtained from Origene. HOIL1 (0.05 mg ml� 1) was incubated with
different concentrations of MALT1 in assay buffer (200 mM Tris-HCl, 0.8 M
Na-citrate, 0.1 mM EGTA, 0.05% CHAPS, 1 mM DTT, pH 7.4)43 for 2 h at 37 �C.
Cleavage of HOIL1 was analysed by 4–12% Bis-Tris SDS–polyacrylamide gel
electrophoresis (PAGE) gradient gels (Life Technologies) and confirmed by
immunoblotting using antibodies to N-HOIL1 (anti-N-terminal HOIL1;
HPA024185; Sigma) and C-HOIL1 (anti-FLAG, clone M2, Sigma) cleavage
products, respectively.

Immunoblotting analysis of lymphocytes. The primary antibodies for
immunoblotting and immunofluorescence confocal microscopy analyses were
directed against: phospho-NF-kB p65 (Ser536; #3031), NF-kB p65 (#4764), IkBa
(#9242), phospho-IkBa (ser32; 14D1), phospho-p65 (ser536; 93H1), phospho-
ERK1/2 (Thr202/Tyr204; #9101) and b-actin (#3700 or #8457) all from Cell
Signaling Technology; monoclonal antibodies to HOIL1 (clone E-2) and MALT1
(H-300) were from Santa Cruz Biotechnology, anti-N-terminal HOIL1 was from
Sigma-Aldrich (HPA024185), and to the MALT1 N-terminal peptide was from
Abcam (clone EP603Y). Anti-RIP1 antibody was from Cell Signaling Technologies
(#4926). Anti-Otulin antibody was from Abcam (anti-FAM105B, ab151117). The
secondary antibodies conjugated with infrared dye (IRDye 800 CW and 680 LT,
1:20,000) were from LI-COR Biosciences.

Immunoblotting analysis of PBMCs, T cells and immortalized B cells was as
follows. Briefly, whole-cell lysates were prepared in modified RIPA lysis buffer

(50 mM Tris-HCl, 150 mM NaCl, 2 mM EGTA and EDTA, and 1% TrionX-100,
pH 7.5) with Halt protease and phosphatase inhibitors (Thermo Scientific). The
lysed cells were incubated at 4 �C for 10 min followed by sonication. Proteins were
separated by SDS–PAGE (10%), and then transferred onto a polyvinylidene
difluoride membrane (Immobilon-FL, EMD Millipore) and incubated with
primary antibodies for 18 h at 4 �C, and then secondary antibodies for 1 h at room
temperature. Imaging was performed on a LI-COR Odyssey infrared imager
(LI-COR Bioscience) and bands were quantified by densitometry using ImagJ
freeware (NIH). Scanned images of immunoblots were cropped in the final
figures for clarity and conciseness. Full images of all blots are shown in
Supplementary Fig. 8.

CBM complex and LUBAC cDNA cell transfections and analyses. HEK293FT
cells (mycoplasma free) were grown in DMEM supplemented with 10% fetal calf
serum, 2 mM L-glutamine, 100 U ml� 1 penicillin and 100mg ml� 1 streptomycin
(all from Amimed) and were transiently transfected using Roti-Fect (Carl Roth).
The expression vectors for BCL10 and an active oncogenic mutant of CARD11
(Leu244Pro) have been described before43. The plasmids pDEST40-SHARPIN-
V5-His, pDEST40-HOIP-V5-His and pDEST40-HOIL1-V5-His were from
Invitrogen/Life Technologies. The expression vector for noncleavable HOIL1
pDEST40-HOIL1-Arg165Lys was made using QuikChange site-directed
mutagenesis (Agilent Technologies). The vectors for wild type and catalytic inactive
MALT1, pCMV-SPORT-Flag-His-S-MALT1 and pCMV-SPORT-Flag-His-S-
MALT1 (Cys464Ala), respectively, and the N-terminally FLAG-tagged HOIL1 and
its cleavage product analogues, N-HOIL1 (1-165) and C-HOIL1 (166-510),
were made by standard procedures. pcDNA3.1-cIAP2-MALT1-Myc-His6 and
pcDNA3.1-cIAP2-MALT1 (Cys464Ala)-Myc-His6 vectors were a kind gift of
Dr Rudi Beyaert (University of Ghent, Belgium).

For cell lysis, cells were collected by centrifugation, washed in 1� PBS and the
cell pellets lysed in NP-40 lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl,
1.0% NP-40) supplemented with complete protease inhibitor cocktail and
phosSTOP phosphatase inhibitor cocktail (Roche Life Science) and clarified by
centrifugation. To preserve ubiquitin chains the cells were lysed by directly adding
1� SDS reducing sample buffer to the washed cell pellets. After boiling, nuclear
DNA was sheared by ultrasonication and proteins were separated on 4–12%
Bis-Tris SDS–PAGE gradient gels (Life Technologies). Proteins were detected by
immunoblotting using the following antibodies: anti-CYLD (E-10) and anti-BCL10
(H-197) from Santa Cruz Biotechnology; anti-MALT1 (MCA2801, clone 50) and
anti-V5 (SV5-Pk1) from Serotec/AbD; anti-b-tubulin (AA2), anti-linear ubiquitin
(MABS199), anti-K48-linked ubiquitin (Apu2) and anti-V5 (AB9732) from
Merck-Millipore; anti-b-tubulin (tub2.1), anti-HOIL1 (HPA024185) and anti-Flag
(M2) from Sigma-Aldrich; anti-RelB (C1E4), anti-CYLD (D1A10) and anti-
CARD11 (1D12) from Cell Signaling Technology; anti-turboGFP (2H8) was from
Origene; anti-HOIP (ab46322) from Abcam; and anti-linear ubiquitin (Lub9)
from BioSensors. Horseradish peroxidase-coupled donkey anti-rabbit and sheep
anti-mouse secondary antibodies were from GE Healthcare. Scanned images of
immunoblots were cropped in the final figures for clarity and conciseness. Full
images of all blots are shown in Supplementary Fig. 8.

NF-jB promoter luciferase assays. HEK293FT cells were transfected with
plasmid DNAs encoding for NF-kB promoter-driven firefly luciferase (kB6-Luc), a
Renilla luciferase under the control of a constitutively active SV40 promoter, and
combinations of the individual LUBAC components. At 36–48 h later, the cells
were lysed in 100-ml passive lysis buffer (Promega) and the bioluminescence of
the samples was measured using the Dual-Luciferase Reporter Assay System
(Promega) and a Berthold TriStar luminometer. The relative luciferase activities
were calculated after normalization of firefly luciferase activities to the activities of
Renilla luciferase.

Linear ubiquitin assays. For polyubiquitinated protein isolation, we used
agarose-coupled TUBE2 (LifeSensors). Immortalized B cells (4� 106) and primary
lymphocytes (1� 107) were seeded and rested at least 1 h, and treated with
PMA/ionomycin with or without z-VRPR-fmk for various times and then lysed
in modified RIPA buffer supplemented with Halt protease and phosphatase
inhibitor cocktail (Thermo Scientific), and deubiquitinase inhibitors (5 mM
O-phenanthroline and 50 mM PR619, LifeSensors). Cell lysates (550 mg) were
mixed with 10ml of pre-washed agarose-TUBE2 and incubated for 18 h at 4 �C.
Agarose-TUBE2 was collected, washed and denatured in SDS–PAGE loading
buffer. Samples were centrifuged and the supernatants were immunoblotted
for total linear ubiquitin (LUB9 antibody, LifeSensors), NEMO (Santa Cruz
Biotechnology; FL-419), RIP1 (Cell Signaling Technology; #4926) and K48-linked-
polyubiquitin (Boston Biochem; #A-101). Scanned images of immunoblots were
cropped in the final figures for clarity and conciseness. Full images of all blots are
shown in Supplementary Fig. 8.

Immunoprecipitation. For co-immunoprecipitation experiments, transfected
cells were lysed in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl and 0.5% NP-40
supplemented with complete protease inhibitor cocktail and phosSTOP
phosphatase inhibitor cocktail (Roche Life Science). Cell lysates were incubated
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overnight with 1 mg precipitating antibody and 30ml Protein G Sepharose
(GE Healthcare). After three washing steps in the NP-40 lysis buffer, protein was
eluted by boiling for 5 min in SDS sample buffer. Nonspecific binding controls
showed that the tagged proteins did not bind beads alone or beads coupled with
another antibody, for example, anti-FLAG antibody on beads controlled for
V5-taged protein and vice versa.

B-cell and antigen-presenting cell interactions. Experiments were performed as
described in Freeman et al.51 The APCs were generated by transiently transfecting
Cos7 cells using Lipofectamine 2000 (Invitrogen) with a plasmid encoding the
surrogate Ag, which was a single-chain Fv containing the variable regions from the
187.1 rat anti-Igk monoclonal antibody fused to the hinge and membrane-
proximal domains of rat IgG1 and the transmembrane and cytoplasmic domains of
H-2K (ref. 61). After 24 h, transfected Cos7 APCs were detached using enzyme free
dissociation buffer (0.5 mM EDTA, 100 mM, NaCl, 1 mM glucose, pH 7.4) and
1.5� 104 cells were plated on 18-mm glass coverslips that had been coated
with 5 mg ml� 1 fibronectin. The APCs were cultured for 12 h in DMEM plus
10% FBS supplemented with 1% L-glutamine, 1% Na pyruvate and 0.05%
penicillin/streptomycin to allow cells to spread and flatten.

Murine splenic B cells were isolated from C57BL/6J mice (9-week 4-day male,
and 19-week 4-day male) (animal protocols were approved by the University of
British Columbia Animal Care Committee) using a B-cell isolation kit (Stemcell
Technologies) to deplete non-B cells. B cells (2� 106) were resuspended in
0.4 ml modified HEPES-buffered saline (25 mM sodium HEPES, pH 7.2, 125 mM
NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM Na2HPO4, 0.5 mM MgSO4, 1 mg ml� 1

glucose, 2 mM glutamine, 1 mM sodium pyruvate, 50 mM 2-mercaptoethanol)
supplemented with 2% FBS and then incubated with 75 mM z-VRPR-fmk or an
equivalent volume of H2O for 30 min at 37 �C. The B cells (1� 106 per coverslip)
were then added to the Cos7 APCs and allowed to attach for 10–30 min at 37 �C
before fixing the cells with 4% paraformaldehyde.

Before staining, the cells were permeabilized with 0.1% Triton X-100 and then
blocked with 2% BSA, 10% goat serum and 25 mg ml� 1 of the 2.4G2 monoclonal
antibody, which blocks Fc receptors on the B cells. The cells were then stained
with AlexaFluor 568-conjugated goat anti-rat IgG (Hþ L chain-reactive; Life
Technologies, catalogue number A11077) to visualize the anti-Igk surrogate Ag,
and with a mouse IgG1 anti-linear polyubiquitin (LUB9) monoclonal antibody
(LifeSensors, catalogue # AB130, the same antibody used to probe the TUBEs
assays)), the same antibody was used to probe the TUBE assay blots, followed by
staining with an AlexaFluor 647-conjugated goat anti-mouse IgG1 (g1 H chain-
specific; Life Technologies, catalogue number A21240) secondary antibody and
AlexaFluor 488 Phalloidin (Life Technologies catalogue # A12379) to visualize
F-actin. Naive primary B cells, which express IgM and IgD, but not IgG, were not
stained to any significant extent by the goat anti-mouse IgG1 secondary antibody
in the absence of primary antibody. Coverslips were mounted using ProLong
Diamond Antifade Mountant (Life Technologies, catalogue #P36961).

Cells were imaged using spinning disk confocal microscope system
(3i—Intelligent Imaging Innovations) with a Zeiss Axiovert 200M microscope
with a � 100 numerical aperture 1.45 oil Pan-Fluor objective and QuantEM 512SC
Photometrics camera. All images were acquired using identical settings and
analysed using FIJI and MATLAB software. Optical z-slices were imaged through
the cell at 0.2-mm intervals. To produce the side view in Fig. 8b. FIJI software was
used to reslice the z-stacks at 0.2-mm intervals. A centre slice was picked for images.
MATLAB software was used to analyse images for fluorescence intensity.
Fluorescence signals for linear ubiquitin and antigen (single-chain anti-Igk) were
measured at the contact site between the B cell and the Cos7 APCs. For cells where
the contact site between B cell and the APC was not in one focal plane could not be
analysed and were excluded.

To compute fluorescence intensities, each image was first filtered using
Laplacian of Gaussian (LoG) filters at a range of scales (scale¼ square of Gaussian
s.d.). Specifically, the Gaussian s.d.’s used were every value in the range from 0.08
to 0.48 mm at intervals of 0.04 mm. To threshold the image for noise, the median
absolute deviation of pixel values was computed and used to estimate (multiplying
by 1.4826) the s.d. For each filtered image, the threshold was set at six noise s.d.’s
above the mean pixel intensity. Finally, a mask generated by retaining all pixels
present at any scale after thresholding LoG filtered images was applied to the
original image and all pixel values within the mask were summed to yield the total
fluorescence intensity. This value was normalized to the total surrogate antigen
fluorescence intensity for the same cell.

N-terminal 10-plex TMT TAILS and shotgun proteomics. The B-cell
N-terminome and proteome from the patient (n¼ 3), brother (n¼ 1) and mother
(n¼ 1), with and without PMA/ionomycin stimulation for 2 and 4 h, were analysed
by TAILS and shotgun proteomics (N¼ 2)39,40. B-cell lysate protein was
prepared by snap-freezing cells in hypotonic lysis buffer (10 mM HEPES, pH 7.5
supplemented with protease inhibitor cocktail, Roche). After removal of cell debris
by centrifugation, 200mg per condition was precipitated by chloroform–methanol
and dissolved in 100 ml labelling buffer (2 M guanidine hydrochloride and 200 mM
HEPES, pH 8.0). Proteins were reduced with TCEP (10 mM, 30 min) and cysteine
residues alkylated with iodoacetamide (25 mM, 30 min in the dark). For TMT
labelling of proteins, 10-plex TMT labels (0.8 mg each, Pierce) were dissolved in a

volume of dimethylsulphoxide equal to the total reaction mixture at that point and
added 1:1 to the proteome samples for 1 h in the dark. Unreacted TMT label was
quenched with ethanolamine (50 mM, 1 h) and all 10 TMT-labelled samples were
combined. The samples were cleaned up by precipitation with ice-cold acetone/
methanol (9:1) for 2 h and precipitates resuspended in 50 mM HEPES buffer,
pH 8.0 and then digested with trypsin (Trypsin Gold, Promega) at 37 �C for 16 h.

After trypsinization, 1% of the sample was desalted on a C18 StageTip and
analysed for shotgun proteomics by liquid chromatography (LC) MS/MS. The rest
of the sample was enriched for N-terminal peptides as follows. Tryptic peptides
displayed unblocked N-terminal a-amines enabling their removal by coupling to a
hyperbranched polyglycerol polyaldehyde-derivatized polymer (HPG-ALD;
Flintbox Innovation Network: http://flintbox.com/public/project/1948/) by
reductive amination (10 mg polymer and 20 mM sodium cyanoborohydride,
pH 6.5) at 37 �C for 16 h. After quenching unreacted aldehydes with ethanolamine
(100 mM, 20 mM fresh sodium cyanoborohydride) for 1 h, the TMT, acetyl- and
pyroglutamate-blocked N-terminal peptides were separated from the polymer by
ultrafiltration using a 10-kDa molecular weight cut-off (MWCO) spin filter
(Amicon). The filtrate containing the N terminome (TAILS sample) was desalted
on a C18 StageTip and analysed by LC-MS/MS and LC-MS/MS/MS.

Mass spectrometry. Dried TAILS and preTAILS shotgun samples were
resuspended in 5% acetonitrile and 0.1% TFA. An Easy-nLC 1000 (Thermo
Fisher Scientific, San Jose, CA) was employed to perform reverse-phase nano-high-
performance liquid chromatography peptide separation and introduction into an
Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific) using 0.1%
formic acid in water as mobile phase A and 0.1% formic acid in acetonitrile as
mobile phase B. Approximately 1 mg of sample in 2 ml of solution was loaded onto a
2 cm Acclaim PepMap100 trap column to perform online desalting followed by
transfer to an EASY-Spray PepMap 50 cm� 75mm C18 Column (Thermo Fisher
Scientific, Bellefonte, PA) for analytical separation. Peptides were eluted using a
gradient of 5–25% mobile phase B over 180 min followed by 25–40% B over an
additional 30 min at a constant flow rate of 300 nl min� 1. The column was
regenerated at 95% B for 10 min.

All samples were analysed in duplicate as technical replicates. Mass
spectrometry data were collected using top speed mode and a maximum cycle time
of 3 s. An Orbitrap full MS scan was acquired from 350 to 1,600 m/z using a
resolution of 120,000 full width at half maximum at 200 m/z and an ion target of
2� 105. The most abundant monoisotopically resolved precursors within a charge
range of þ 2 to þ 9 were selected using a 2 AMU quadrupole isolation width for
MS/MS product by higher-energy collisional dissociation (HCD) at 40%
normalized collision energy followed by detection in the Orbitrap at a resolution
of 60,000 with an ion target of 105. A fixed first mass of 110 m/z was used for
MS/MS scans.

SPS62 mode acquisition was executed using an Orbitrap full MS scan from
350 to 1,600 m/z with a resolution of 120,000 full width at half maximum in top
speed mode with a 3 s maximum cycle time as follows. The most abundant
monoisotopically resolved precursors with charges from þ 2 to þ 9 were selected
by quadrupole isolation at 2 AMU for MS/MS collision-induced dissociation (CID)
fragmented in the linear ion trap at 30% normalized collision energy. Up to 10 of
the most intense products from the MS/MS spectra were selected, coisolated and
fragmented together in the HCD cell at 55% normalized collision energy with
subsequent detection in the Orbitrap at 60,000 resolution with a scan range of 100–
500 m/z and an ion target of 105. A variation of this method employing charge-
dependent MS/MS fragmentation using either CID or electron-transfer dissociation
(ETD) in the ion trap was also performed.

Proteomics data analysis. All data analysis was conducted using Thermo
Scientific Proteome Discoverer 2.0 and the integrated Byonic v1.4 search node.
Ion trap spectra were searched with mass tolerances of 10 p.p.m. for the precursor
ion and 15 p.p.m. (Orbitrap) or 0.6 Da (ion trap) for fragment ions. Quantification
was performed using the MS/MS spectra for the Orbitrap MS/MS HCD method
and the MS/MS/MS spectra for the SPS method. Technical replicates were searched
together. After initial assessment of labelling efficiency, carbamidomethylation
(þ 57.021 Da) of cysteine and TMT isobaric labelling (þ 229.162 Da) of lysine
were set as static modifications, whereas TMT labelling of the protein N termini,
acetylation of protein N termini (þ 42.011), formation of pyroglutamate from
glutamine on peptide N termini (� 17.027), deamidation of asparagine and
glutamine (þ 0.984 Da) and methionine oxidation (þ 15.996 Da) were considered
dynamic modifications. Because of the TMT labelling of lysine residues, which
trypsin does not recognize, data were searched using semi-specific ArgC search
parameters with up to two missed cleavages. Spectra were searched against the
complete Swiss-Prot human database (release 2013_08) at a 1% protein level FDR.
Resulting peptide lists were filtered for peptides identified with a probability 40.99.

Working peptide lists for baseline ratio determination in the TAILS
experiments were filtered for peptides containing N-terminal TMT, acetyl or
pyroglutamate. Reporter ion ratios were calculated as heterozygous control
(MALT1þ /mut brother or mother)/average homozygous patient (MALT1mut/mut;
n¼ 3) per experiment and per condition, yielding eight separate distribution lists.
Significant outlier cutoff values were determined after log(2) transformation by
boxplot-and-whiskers analysis using the BoxPlotR tool63. Venn diagrams were
created using the BioVenn web application64.
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Substrate winnowing. Candidate MALT1 substrates were selected by a new
substrate winnowing strategy (Supplementary Fig. 3) and by the following criteria.
A substrate was identified only if the neo-N-terminal peptide was internal, that is,
not starting at a recognized protein start or processing site, and was N-terminally
blocked by a TMT label. Moreover, the neo-N-terminal peptides must be
significantly more abundant in samples from the heterozygous controls compared
with the MALT1-deficient patient and with the peptide-spectrum match (PSM)
ratio higher than the 75th percentileþ 1.5� interquartile range; the neo-N-term-
inal peptide must have increased abundance in PMA/ionomycin-stimulated sam-
ples compared with the vehicle control for the same subject; where the protein
natural N terminus was also identified the neo-N-terminal peptide to natural
N-terminal peptide ratio was high to ensure that cleavage was not merely increased
concomitantly with increased total protein after stimulation of between cells; the
neo-N-termini were reproducibly identified in two or more TAILS samples and by
Z3 spectra; finally, the cleavage site needed to conform to the strict MALT1-
cleavage site specificity of an arginine at P1 and was cleaved in biochemical in vitro
cleavage assays.
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