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Early infancy microbial and metabolic alterations affect
risk of childhood asthma
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Asthma is the most prevalent pediatric chronic disease and affects more than 300 million people worldwide.
Recent evidence in mice has identified a “critical window” early in life where gut microbial changes (dysbiosis)
are most influential in experimental asthma. However, current research has yet to establish whether these
changes precede or are involved in human asthma. We compared the gut microbiota of 319 subjects enrolled
in the Canadian Healthy Infant Longitudinal Development (CHILD) Study, and show that infants at risk of asth-
ma exhibited transient gut microbial dysbiosis during the first 100 days of life. The relative abundance of the
bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia was significantly decreased in children at
risk of asthma. This reduction in bacterial taxa was accompanied by reduced levels of fecal acetate and dys-
regulation of enterohepatic metabolites. Inoculation of germ-free mice with these four bacterial taxa amelio-
rated airway inflammation in their adult progeny, demonstrating a causal role of these bacterial taxa in
averting asthma development. These results enhance the potential for future microbe-based diagnostics and
therapies, potentially in the form of probiotics, to prevent the development of asthma and other related allergic
diseases in children.
m
.sc
 by guest on July 11, 2017
iencem

ag.org/
INTRODUCTION

Asthma is a chronic inflammatory disease of the airways currently
affecting more than 300 million people worldwide (1, 2). It is also the
most prevalent childhood disease in westernized countries (1, 2),
highlighting the marked disparity in prevalence between developed
and developing countries (3). Like other immune-mediated diseases,
asthma pathogenesis has genetic and environmental components.
Genome-wide association studies have yielded several gene loci asso-
ciated with asthma, but these do not explain the largest proportion of
asthma heritability (4). Epidemiologic studies have found a number of
environmental exposures associated with asthma that may better explain
the sharp increase in asthma prevalence in the past 30 years.Many of these
exposures are associated with early-life events known to alter the micro-
biota, includingpre- andperinatal antibiotics, delivery by caesarean section,
urban (versus farm) living, and formula feeding (5). The microflora hy-
1Michael Smith Laboratories, University of British Columbia, Vancouver, British
Columbia V6T 1Z4, Canada. 2Department of Microbiology & Immunology, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada. 3Child & Family
Research Institute and BC Children’s Hospital, Vancouver, British Columbia V4Z 4H4,
Canada. 4Biomedical Research Centre, University of British Columbia, Vancouver,
British Columbia V6T 1Z3, Canada. 5Department of Medicine, McMaster University,
Hamilton, Ontario L8S 4L8, Canada. 6Department of Pediatrics, University of Toronto,
Toronto, Ontario M5S 2J7, Canada. 7Hospital for Sick Children, Toronto, Ontario M5G
1X8, Canada. 8Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G
2R3, Canada. 9School of Public Health, University of Alberta, Edmonton, Alberta T6G
2R3, Canada. 10Department of Pediatrics and Child Health, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada. 11Department of Pediatrics, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada. 12Department of Biochem-
istry and Molecular Biology, University of British Columbia, Vancouver, British Columbia
V6T 1Z4, Canada.
*These authors contributed equally to this work.
†CHILD Study Investigators are listed in the Supplementary Materials.
‡These authors contributed equally to this work.
§Corresponding author. E-mail: sturvey@cw.bc.ca (S.E.T.); bfinlay@mail.ubc.ca (B.B.F.)

www.ScienceTra
pothesis suggests the intestinal microbiota as the link between these
environmental changes and our immune system, andmany recent studies
have identified the intestinal microbiota as a potential therapeutic target in
thepreventionof asthmaandatopicdisease (6–9).There isnowevidence in
mice and humans of an early-life “critical window” in which the effects of
gut microbial dysbiosis are most influential in human immune develop-
ment (10–12). We recently showed that perinatal antibiotic treatment of
ovalbumin (OVA)–challenged (asthma-induced) mice exacerbates airway
inflammation by increasing serum and surface-bound immunoglobulin
E (IgE) and decreasing regulatory T cell (Treg) accumulation in the colon
(11). Research associating these early-life gut microbial changes with
asthma development, however, has not yet been translated into humans.

Early life gutmicrobial alterations not only are limited to shifts in the
prevalence of gut microbes (10, 11) but also include changes in the pro-
duction ofmicrobial-derivedmetabolites such as short-chain fatty acids
(SCFAs) (13) and othermetabolites that interactwith host immune cells
(13–15). Recently, the SCFAs acetate and propionate were implicated in
the reduction of airway cellular infiltration in a mouse model of lung
inflammation (13). Shifts in SCFAs have also been associated with
the development of food allergies in children (16). In addition, by mea-
suring a complete set of small-molecule metabolites, also known as the
metabolome, recent studies have detected severalmetabolites associated
with asthma in both humans (17) and guinea pigs (18). This metabolic
signal involves metabolites of host and bacterial origin (17), both of
which are important in asthma pathogenesis. However, to our knowledge,
there is no current research aimed to detect early-life metabolic changes
before asthma diagnosis that can potentially be used as biomarkers to
predict or avert disease development.

Designed to elucidate the factors involved in asthma and atopic dis-
ease development, the Canadian Healthy Infant Longitudinal Develop-
ment (CHILD) Study is amulticenter, longitudinal, prospective, general
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population birth cohort study following infants from pregnancy until
5 years of age. Here, we provide evidence in a cohort of 319 human sub-
jects enrolled in the CHILD Study supporting a link between gutmicro-
bial dysbiosis in the first 100 days of life, characterized by reductions in
four bacterial genera—Lachnospira, Veillonella, Faecalibacterium, and
Rothia—and an increased risk to develop asthma. We confirmed this
association in a mouse model of experimental asthma and showed that
supplementation with these bacterial taxa ameliorated lung inflamma-
tion in previously germ-free mice inoculated with stool from an asth-
matic patient. Additionally, we performed an in-depth analysis of the
functional potential of the gut microbiota, combined with the measure-
ment of fecal SCFAs andurinarymetabolomic analysis. This comprehen-
sive analysis provides anunderstandingof early-life alterations inmicrobial
and host metabolism that precede asthma development in children.
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RESULTS

Assessment of asthma risk in CHILD Study subjects
Using a nested case-control design, we selected 319 children from the
CHILD Study for gut microbiome analysis (see Materials andMethods
for the inclusion and exclusion criteria). The study participants were
grouped into four clinically distinct phenotypes based on allergy skin
prick testing (that is, atopy) and clinical wheeze data at 1 year of age:
atopy +wheeze (AW,n=22), atopy only (n=87), wheeze only (n=136),
and controls (n=74) (Fig. 1).Given that theCHILDStudy is longitudinal,
over the course of this study, the children in this cohort reached 3 years
of age, and thus, 2- and 3-year clinical data were used to confirm the
clinical significance of the 1-year phenotypes. We applied the stringent
Asthma Predictive Index (API), a clinically validated predictive index
for the presence of active asthma at school age (between 6 and 13 years
of age) (19). A positive API at 3 years of age is associated with a 77%
chance of active asthma at school age, whereas children assigned a neg-
ativeAPI have only a 3% chance of experiencing active asthma at school
www.ScienceTra
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age (20). CHILD Study subjects in the AW group at 1 year of age were
13.5 times more likely [P = 0.0003; 95% confidence interval (CI), 3.2 to
57.4] than the controls, 5.6 times (P = 0.0037; 95%CI, 1.8 to 17.5) more
likely than the atopy only group, and 4.9 times (P = 0.0036; 95% CI, 1.8
to 14) more likely than the wheeze only group to have a positive API.
Children were also assessed by a CHILD clinician at 3 years of age for
the diagnosis of asthma. TheAWgroupwas 21.5 timesmore likely than
the control group (P= 0.002; 95%CI, 2.4 to 196.0), 3.9 timesmore likely
than the atopy only group (P = 0.0429; 95% CI, 1.09 to 14.5), and 5.4
times more likely than the wheeze only group (P = 0.0137; 95% CI, 1.5
to 19.0) to be diagnosedwith asthma by 3 years of age (Fig. 1). Together,
the API and diagnosis of asthma at 3 years of age emphasize the clinical
relevance of the AW phenotype at age 1 year.

In line with other asthma epidemiologic studies (21), exact logistic
regression analysis identified antibiotic exposure in the first year of life
(OR, 5.6; P = 0.009) and atopic dermatitis (see Definitions of clinical
variables in Materials and Methods for definition) at 1 year (OR, 6.4;
P = 0.005) as factors that increased a subject’s risk of being classified
in the AW group compared to controls (table S1). Caesarean birth (22),
exclusive formula feeding (22), and antibiotic exposure (23) in infancy are
also common factors associatedwith gutmicrobial dysbiosis, but only an-
tibiotic exposure in the first year of life was found to be a significant factor
in this subpopulation.

Gut microbiome changes in infants at risk of asthma
Consistent with microbiome studies in other cohorts of young children
(24), principal components analysis (PCA) identified age as the main
driver of microbial and metabolic shifts in this cohort (figs. S1 and S2
and table S2). Overall gut community composition did not differ subs-
tantially among clinical phenotypes, as shown by PCA of the 3-month
and 1-year samples (Fig. 2A and fig. S3A). Additionally, although pre-
vious studies have shown a decrease in microbial diversity in fecal
samples from asthmatic patients (25), our study did not reveal any sig-
nificant differences in diversity among the four phenotypes (Fig. 2B and
fig. S3B). Nevertheless, a comparison of relative taxa abundance ac-
cording to the clinical phenotype (Fig. 2C) identified differences in the
prevalence of some less abundant bacterial taxa (that is, Micrococcaceae
and Veillonellaceae) in the 3-month stool samples, differences that were
not present at 1 year (fig. S3C). These differences were evenmore appar-
ent at the genus level (fig. S4, A and B), where the AW group exhibited
lower abundances of the genera Faecalibacterium, Lachnospira, Rothia,
and Veillonella, exclusively at 3 months. Statistical analysis of the top 50
operational taxonomic units (OTUs) across phenotypes yielded 8 differ-
entially abundant OTUs at 3 months, including the genera Faecalibac-
terium, Lachnospira,Rothia,Veillonella, andPeptostreptococcus, whereas
only 1OTUwas differentially abundant at 1 year,Oscillospira (table S3;mt
test, raw P = 0.03). Comparison of relative taxa abundances among atopic
versus non-atopic or wheezing versus non-wheezing children did not
identify any significant differences in the 3-month or 1-year gut micro-
biota (figs. S6 and S7). This, and the significantly increased likelihood of
the AWsubjects to be diagnosedwith asthma by 3 years of age, prompted
validation of 16S sequence data among the two extreme phenotypes (AW
and controls) using quantitative polymerase chain reaction (qPCR).

We designed and optimized specific primers for the genera Faecali-
bacterium, Lachnospira, Rothia, Veillonella, and Bifidobacterium. A
subset of samples (nAW= 21, nCTRL3-months = 20, nCTRL1-year = 19), repre-
sentative of the original cohort (nAW=22,ncontrol = 74) based on an exact
logistic regressionmodel (table S9),was selected for qPCRbasedoncriteria
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Fig. 1. Classification of study participants. Distribution of 319 subjects
among the four 1-year clinical phenotypes based on skin prick tests and

wheeze data at 1 year of age: controls, AW, atopy only, and wheeze only.
The odds ratios (ORs) associating the phenotypes to a 3-year asthma diag-
nosis are signified as a heatmap color relative to the control group [ORs: AW
versus controls, 21.5 (P = 0.0022; 95% CI, 2.4 to 196.0); atopy only versus
controls, 5.4 (ns); wheeze only versus controls, 4.0 (ns)].
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specified in Materials
and Methods. qPCR
confirmed significantly
lower abundances of
Veillonella, Lachnospira,
Rothia, and Faecalibac-
terium in the 3-month
AW stool samples com-
pared to controls (Fig.
2D;Mann-Whitney,P<
0.001). The abundance
of Bifidobacterium, a
taxonwith similar rela-
tive abundance in AW
and controls, was also
measured to further
validate the consistency
between the 16S and the
qPCR results. In agree-
ment with the 16S se-
quencing results, these
differences were much
less apparent in the 1-
year stool [Veillonella
andLachnospira showed
less significant differ-
ences (P<0.05),whereas
the other three genera
were not significantly
different], suggesting
that reductions in these
genera are associated
with atopy andwheezing
by 1 year of age. Further,
because the children in
the AW phenotype are
21.5 times more likely
than the control group
to develop asthma by 3
yearsof age (Fig. 1), these
results suggest that
lowerabundancesof these
bacterial taxa in early
life are associated with
ahighrisk of asthmadi-
agnosis by 3years of age.

Microbe-derived
functional changes
in infants at high
risk of asthma
Todetermine the impor-
tance of this early-life
dysbiosis in the infants
at highest risk of asthma,
the functional poten-
tial of the fecalmicrobio-
ta was predicted using
A
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Fig. 2. Gutmicrobial composition and functional potential by clinical phenotype at 3months. (A) Multivariate analysis by
PCA of the fecalmicrobiota across the four clinical phenotypes at 3months. Circles denote 95%CIs. (B) Alpha diversity (Shannon

diversity index) among the four clinical phenotypes at 3 months [shown as box plots, the upper and lower “hinges” corre-
spond to the first and third quartiles (the 25th and 75th percentiles)]. (C) Relative abundance of bacterial families within the
top 100OTUs among the four phenotypes at 3months. Colors of rectangles correspond to the bacterial families in the legend.
Rectangles represent specific OTUs, which are organized in order of abundance. (D) qPCR quantification of selected genera
relative to total 16S amplification in all AW fecal samples and a randomly selected subset of control fecal samples at 3months
(nCTRL = 20, nAW = 21) and 1 year (nCTRL = 19, nAW = 21) (Graphs based on a logarithmic scale, * < 0.05, ** < 0.01, *** < 0.001. Mann-
Whitney; Veillonella: P3mo = 0.0001, P1y = 0.0368; Lachnospira: P3mo = 0.0002, P1y = 0.029; Rothia: P3mo = 0.0001, P1y = ns; Faecalibacterium:
P3mo = 0.0001, P1y = ns; Bifidobacterium: P3mo = ns, P1y = ns).
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PICRUSt (Phylogenetic Investigation of Commu-
nities by Reconstruction ofUnobserved States), an
algorithm that infers the functional metagenome
of microbial communities based on marker gene
data and reference bacterial genomes. We com-
pared the inferred genetic composition of the fe-
cal microbiota in the same subset of samples
selected for qPCR(Fig. 3) andobserved a number
of genes that were associated with the AW phe-
notype. Of the total 6911 genes [defined as
KEGG (Kyoto Encyclopedia of Genes and Gen-
omes) orthologs (KO)] surveyed, 2364 genes
were significantly different at 3 months, whereas
only 125 genes were different at 1 year [additional
data table S1; Wald test and false discovery rate
(FDR), P < 0.05]. The top 30 differential genes
(based on lowest P values; table S4) highlight
the capacity of these genes to discriminate be-
tween the AW group and controls at 3
months, but not at 1 year of age (Fig. 3). This func-
tional difference in the3-month stool samples sug-
gests potential for the community to influence
development of asthma. The functional differ-
ences in the AWcommunity involved genes with
diverse metabolic functions (that is, gene replica-
tion, carbonmetabolism, transporters, and amino
acid biosynthesis; table S5).Once these geneswere
organized into specific metabolic pathways,
lipopolysaccharide (LPS) biosynthesis was the
pathway that differed most between the AW and
control groups (Welch’s t test, fig. S5A). To validate
this result, LPSwas extracted andquantified in stool
samples available for analysis. Consistent with the
PICRUSt predictions, the LPS concentration was
lower in the feces of AW children (nAW = 14,
nCTRL = 12; Mann-Whitney, P = 0.09; fig. S5B).
These biochemical data support the PICRUSt-
predicted results, suggesting a real functional
change in bacterial composition. Consistent
with the importance of changes very early in life,
significant differences in specific metabolic
pathways between the clinical groups were not
found in the 1-year samples.

The functional implications of the gut com-
munity in AW children were further investi-
gated by measuring SCFA levels in feces and
A

B

Fig. 3. PICRUSt analysis at 3months and1yearof
age. (A and B) Heatmap of the top 30 most signif-

icant differentially abundant genes (KOs) between
AW and controls at (A) 3 months and (B) 1 year ob-
tained by PICRUSt analysis of the same subset of
samples in Fig. 2D (nAW = 21, nCTRL3-months = 20,
nCTRL1-year = 19). Heatmap colors represent variance-
stabilized KOabundance (red, lowabundance; green,
high abundance). KO identification can be found in
additional data table S1. Hierarchical clustering of
the subjects was based on Euclidean distance using
the complete linkage method.
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urine, as well by urine metabolomics. An exact logistic regressionmodel
was used to confirm that the control andAWsubsets used for SCFA and
metabolomics analyses were representative of the larger cohort (nAW =
22, ncontrol = 74) (tables S10 to S13). At 3months of age, fecal samples of
AW children had a significantly lower concentration of acetate (Fig. 4A
and table S6). A biweight correlation analysis between the top 50 OTUs
organized into families and acetate did not show any significant corre-
lations between specific taxa and acetate. This could be because the abil-
ity to ferment 6-carbon sugars andproduce this SCFA is sharedby several
bacterial species belonging to phylogenetically distant taxa, or due to a
difference in acetate intestinal uptake.
www.ScienceTranslationalMedicine.org 30 Sept
Urinemetabolomic analysis was used
to identify metabolic differences of both
host and microbial origin (26). By com-
paring urine from AW and control sub-
jects, a subtle yet significant metabolic
signal was detected between the two phe-
notypes (of the 580 metabolites identi-
fied, 39 differed significantly at 3 months
and 28 differed at 1 year). Given our focus
on the microbiome, we examined metab-
olites of microbial origin or contribution.
Eight metabolites influenced by bacterial
metabolism were differentially excreted
in the urine of AW children compared
to controls at 3months of age, whereas only
two were differentially detected at 1 year,
reflecting once again the impact of mi-
crobial dysbiosis in early infancy. At
3 months, the excretion of sulfated bile
acids glycolithocholate, glycocholenate,
and glycohyocholate was higher in AW
children, whereas tauroursodeoxycholate
excretion was decreased (Fig. 4B). Perhaps
the most striking metabolic difference
observed in the urine of AW children
was the 14-fold increase in urobilinogen,
a specific product of the gut microbiota.
Urobilinogen is formed by the reduction
of bilirubin, a breakdownproduct of heme
catabolism. Correlation analysis did not
find significant associations between mi-
crobial taxa and thesemetabolic changes.
Thus, it is possible that the alterations in
these urinarymetabolites are the result of
a combination ofmicrobial andhostmeta-
bolic activity.Nevertheless, they constitute
a marker of gut dysbiosis in early infancy
that can be detected in urine and that is
linked to asthma risk.

FLVR-mediated amelioration of
murine lung inflammation
To move from correlation to causation,
the roleofFaecalibacterium sp.,Lachnospira
sp.,Veillonella sp., andRothia sp. (collect-
ively abbreviated as FLVR) in asthma
susceptibility was explored in a murine
model of airway inflammation with humanized microbiota. Adult germ-
free (GF) mice (n = 4) were inoculated with feces from one AW subject
collected at 3 months or with the same human inoculum deliberately
supplementedwith live FLVR. This AWsubject was chosen on the basis
of the very low abundance of these four taxa in the 3-month feces, the
positive stringent API, and the formal diagnosis of asthma by 3 years of
age. The fecal microbiota from the subsequent generation (F1) was
clearly distinguishable between mice born to parents supplemented
with FLVR or not (Fig. 5A). Mice born to parents harboring FLVR suc-
cessfully maintained these strains, with Lachnospira sp. colonizing at a
much higher abundance than the other three strains (Fig. 5, B and C).
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Fig. 4. Metabolites in feces and urine at 3 months of age. (A) Concentration of the three most abundant
SCFAs in feces of AW and control samples at 3 months of age, measured by gas chromatography (GC) and

normalized to feces wet weight (nAW = 13, ncontrol = 13; Mann-Whitney, P = 0.03 for acetate). (B) Relative
concentration of metabolites of known microbial origin or contribution detected in the urine of AW and
control samples at 3months of age. Metabolomics data are shown as scaled intensities normalized to osmolality,
measuredbyultrahighperformance liquidchromatography–tandemmassspectrometry (UPLC-MS/MS). Thecolor
of the plot titles denotes the biochemical pathway in which the metabolite is involved (nAW = 19, ncontrol = 16;
Mann-Whitney, P = 0.048, 0.006, 0.047, 0.049, 0.0264, 0.0334, 0.052, and 0.0394, respectively: * < 0.05).
ember 2015 Vol 7 Issue 307 307ra152 5

http://stm.sciencemag.org/


R E S EARCH ART I C L E

 by guest on July 11, 2017
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

PICRUSt analysis from thesemicrobial communities yielded 138 signif-
icantly different pathways between the AW and AW + FLVR groups
(additional data table S2; Welch’s t test and FDR, P < 0.05). This large
functional change was expected given the striking differences between
the two gut microbial communities. Secondary bile acid metabolism
and carbohydrate metabolism—pathways that were also altered in the
urine of AW children—were among the differential pathways in this
experiment (fig. S8A). Additionally, the concentration of the SCFA
butyrate (not acetate) was reduced in the AWmouse group, indicating
that SCFA production was also increased in mice upon FLVR inocula-
tion (fig. S8B). The difference in SCFA alterations between mice and
humans may be explained by the differences in microbial populations
between the two species. Similarly, the interspecies differences in gut mi-
crobial populations may explain the PICRUSt-predicted decrease in LPS
pathways in mice treated with FLVR (fig. S8A). The biggest difference in
microbial population between mice and humans was the presence of
Bacteroidetes OTUs inmice. Unlike the fecal microbial communities in
3-month-old children, mice given the AWmicrobiota had a large pro-
portion of Bacteroidetes OTUs (Gram-negative, LPS-positive), which
were substitutedmainly byLachnospira sp. (Gram-positive, LPS-negative)
upon FLVR treatment.

To determine whether FLVR supplementation would modulate an
airway inflammatory response, the F1 generation was immunized with
OVA at 7 to 8 weeks of age. Mice inoculated with the AW microbiota
exhibited a severe lung inflammatory response to OVA, characterized
by amixed lung infiltrate composed of neutrophils, eosinophils, macro-
phages, and lymphocytes.However, supplementation of theAWmicro-
biota with FLVR significantly decreased the total lung cell infiltrate, as
well as the total number of neutrophils and lymphocytes in the bronch-
oalveolar lavage (BAL; P < 0.05) (Fig. 5, D and E). Biweight correlation
analysis showed that Lachnospira has a strong negative correlation with
total BAL cell counts (r = −0.82, adjusted P = 0.009), whereas the other
two bacterial species that were also significantly correlated were much
less abundant and had lower correlation values (fig. S9). Histopa-
thological scoring confirmed that supplementation with FLVR reduced
airway inflammation (Fig. 5, F andG;P<0.01). In addition, FLVRsupple-
mentation significantly reduced both the concentrations of the proinflam-
matory cytokines [interferon-g (IFN-g), tumor necrosis factor (TNF),
interleukin-17A (IL-17A), and IL-6] in lung homogenates and OVA-
specific IgG2a levels in serum (fig. S10, A and B; P < 0.01 to 0.0001).
Together, these data show that the microbiota from the AW sample in-
duced a mixed T helper cell 1 (TH1)/TH2/TH17 lung inflammatory re-
sponse, and that deliberate, therapeutic colonization with FLVR
significantly reduced theTH1/TH17 components of the immune response.
DISCUSSION

Our findings indicate that in humans, the first 100 days of life represent
an early-life critical window inwhich gutmicrobial dysbiosis is linked to
the risk of asthma and allergic disease. These findings are consistent
with previous animal studies (11, 27, 28). This early-life microbial dys-
biosis is characterized by reductions in four specific bacterial genera—
Faecalibacterium, Lachnospira, Veillonella, and Rothia—rather than
changes in overall community composition or diversity, which have
been observed in previous studies (25). Further, our data also show that
these gut microbial changes are much less apparent by 1 year of age,
suggesting that therapeutic interventions to address microbial dysbiosis
www.ScienceTra
would need to occur very early in life. Future work in similar human
cohorts surveying additional time points over the course of the first year
of life will help determine with better accuracy the range of time where
this dysbiosis can be detected and its dynamics.

Enhanced appreciation of the human microbiome has revealed that
a compositional difference in bacterial communities does not necessar-
ily translate to functional differences (29). We addressed this potential
disconnect by inferringmetagenomic information from the 16S data, as
well as by measuring SCFA and urine metabolites. PICRUSt analysis
showed LPS biosynthesis pathways to be significantly reduced in AW
subjects at 3months. Considering that the vastmajority of the intestinal
bacteria detected at 3 months were Gram-positive (all except Entero-
bacteriaceae and Veillonellaceae), it is possible that the difference in
Veillonella species may account for the difference in LPS biosynthesis
genes in the AW group. The immune status of the children enrolled in
this cohort was not studied at 3 months of age due to the challenge of
obtaining blood samples at this age. However, LPS exposure has been
determined as relevant in the regulation of TH2-type immune responses
by inducing proliferation of IL-12–producing dendritic cells and pro-
moting theTH1 armof the immune response (30). It has also been dem-
onstrated that diminished exposure of LPS in neonatal mice born via
caesarean section prevented the development of tolerance in intestinal
immune cells (31). Thus, such a marked reduction in one of the only
intestinal bacterial groups that produce LPS during early life may have
profound immune consequences.

Another important finding of this study is that fecal acetate was sig-
nificantly reduced in AW subjects at 3months of age. In animal models
of asthma, the SCFAs, propionate (13), acetate (13), and butyrate (32)
have all been shown to protect against airway inflammation, and this
protective effect has been attributed to the stimulation of Tregs and den-
dritic cells capable of preventing TH2-type immune responses (14). A
reduction in glycanmetabolism pathways, many of which lead to SCFA
production, in AW subjects was also inferred by metagenomic analysis
usingPICRUSt (table S5), strengthening the association between the gut
microbial communities in AW subjects and the measured reduction in
fecal acetate.

Other microbe-derived metabolites altered in AW subjects were
found in their urine, and these may have potential as early-life biomar-
kers of asthma risk. These include the secondary bile acids glycolitho-
cholate, glycocholenate, glycohyocholate, and tauroursodeoxycholate.
Changes in the urinary excretion of these enterohepatic metabolites
can occur from an increase in host production and/or a change in the
microbial enzymatic activity on their substrates. Although our study
was not designed to unravel the complex mechanisms linking gut mi-
crobial dysbiosis with the detected metabolic alterations, it is possible
that a reduction in four bacterial taxa known to have enzymatic activity
on bile (33–36) may induce a change in their urinary excretion. Future
work should aim to explore the role of these metabolites in asthma
pathogenesis and to determine their biomarker potential in larger hu-
man cohorts.

The therapeutic inoculation of GF mice with FLVR significantly re-
duced airway inflammation in their adult offspring, highlighting the
strong immunomodulatory capacity of particular gut microbiota in
lung inflammation. FLVR treatment successfully colonized F1 mice
with Lachnospira and to a lesser extent with Faecalibacterium, Rothia,
and Veillonella. Moreover, there was a significant negative correlation
with Lachnospira and total BAL counts, strongly suggesting that the re-
duced inflammatory effect may be due to the presence of Lachnospira.
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Given the complexity of reproducing human infant microbiota inmice,
it was expected that the proportional abundances of FLVR in mice
would differ from human control subjects. The adopted gut microbiota
observed in the offspring of FLVR-treatedmice, aswell as the significant
reduction in lung inflammation, may be a consequence of Lachnospira
www.ScienceTra
outcompeting the other three bacteria in FLVR, as well as other bacteria
in the AW inoculum. Some, but not all, functional aspects of what was
detected in AW human samples were replicated in the mouse experi-
ment, and the lack of complete replication between species is likely due
to the large differences in microbial communities between mice and
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airway inflammation
(A) Multivariate analy-
sis by PCA of the feca
microbiota of F1 mice
(3-week-old pups) born
from parents inoculated
with feces of an AW 3-
month-old infant (AW)
or with the same sam-
ple plus a live mixture
of Lachnospira multip-
ara, Veillonella parvula
Rothia mucilaginosa
and Faecalibacterium
prausnitzii (AW + FLVR)
Circles denote 95% CIs
(B) Bacterial family rela-
tive abundance in the
same mice in (A). (C) The
percent abundance of
Lachnospira sp., Veillonel-
la sp., Rothia sp., and
Faecalibacterium sp
was elevated in mouse
pups born to parents
inoculated with FLVR
(green bars). (D) Cellu-
lar counts in the BAL
of mice (AW or AW +
FLVR) after a 3-week
OVA immunization re-
gime to induce airway
inflammation. (E) Tota
cell differential counts
in the BAL. Stars denote
a significant decrease
in lymphocytes (green
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tween the AW andAW+
FLVR groups. (F and G
Total histopathologica
scores (F) and represen-
tative hematoxylin and
eosin–stained lung
sections (G). Scale bar
300 mm. (D to F) nnaïve =
8, nAW = 18, nAW+FLVR =
28, analysis of variance
(ANOVA); * < 0.05, ** <
0.01, *** < 0.001, **** <
0.0001; for raw data and
P values, see additiona
data table S3.
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humans. However, the fact that FLVR supplementation was protective
and induced a marked reduction in lung inflammation in mice empha-
sizes that these taxa are immunomodulatory and involved in asthma.

The cell types that were significantly reduced by FLVR treatment
were neutrophils and lymphocytes. Although a reduction in eosinophil-
ia and IgE was not observed, FLVR treatment significantly reduced rel-
evant TH1/TH17 immune factors, such as IL-6, IL-17A, and TNF.
Notably, the cytokine pattern observed in AW-treatedmice is reminis-
cent of the elevated TNF, IL-17A, and IL-6 associated with severe hu-
man asthma with increased levels of neutrophils (37–39).

This study involves the largest human infant cohort for which gut
microbial composition and functional potential have been assessed in
the context of atopy, wheeze, and asthma.However, repeated and longi-
tudinal exploration in large-scale human cohorts beginning ideally be-
fore 3months of agewill be necessary to further confirm the universality
of our findings. Further, given that 16S ribosomal RNA (rRNA) sequen-
cing provides researchers with only a compositional analysis of the mi-
crobiota, metagenomic sequencing in a similar cohort would provide a
more in-depth view of the compositional and functional changes among
atopic/asthmatic and healthy children. Additionally, future human
microbiota colonization experiments in mice, aimed to improve the re-
semblance to human infant microbiota, will help to determine themech-
anisms by which FLVR influences asthma development early in life.

Our data support transient early-life microbial dysbiosis as an im-
portant factor influencing asthmadevelopment, and emphasize the pro-
tective role played by four specific bacterial genera: Faecalibacterium,
Lachnospira, Veillonella, and Rothia. We identified several early-life
metabolic alterations with biomarker and therapeutic potential, which
will prompt further functional studies to determine their role in asthma
pathogenesis. Together, our findings establish an important role for the
early-life intestinalmicrobiota in shaping immune systemdevelopment,
and enhance the potential for using rationally designed microbe-based
therapies to prevent the development of asthma and other allergic dis-
eases that begin in childhood.
 on July 11, 2017
MATERIALS AND METHODS

Study design
This studywas based on a nested case-control design to analyze the fecal
microbiota of infants enrolled in the CHILD Study (inclusion and ex-
clusion criteria are described below). On the basis of the sample avail-
ability, we selected all subjects with 3-month and 1-year stool samples
available from the first three phenotypes (AW, atopy only, and wheeze
only) and a portion of controls in which additional biological samples
were also available. Ultimately, 319 subjects were selected for micro-
biome analysis. Researchers were blinded to the phenotypic classifica-
tions through completion of the Mothur/CrunchClust bioinformatic
pipeline. Twenty-two of the 319 subjects selected for microbiome anal-
ysis were later determined to be at the highest risk of asthma develop-
ment (AW), based on the API (19) (described below) and clinician
diagnosis of asthma by 3 years of age. The 16S rRNA gene was se-
quenced from fecal samples collected at 3 and 12 months of age for mi-
crobial community composition and diversity analysis. Decreases in
four bacterial genera—Faecalibacterium, Lachnospira, Veillonella, and
Rothia (designated FLVR)—were observed in the AW group compared
to the other three phenotypes. To confirm the observed decrease in
these four bacterial genera, qPCR was performed in 16S rDNAV3 am-
www.ScienceTra
plicons from all but one of the AW subjects and a randomly chosen
subset of 20 control subjects at both time points. One AW subject
was excluded because of lack of additional DNA and stool samples,
and the control subset was established to be representative of the larger
cohort (ncontrol = 74) according to an exact logistic regressionmodel (table
S9). The potential metagenomic informationwas obtained from 16S data
via PICRUSt analysis in the same subjects chosen for qPCR analysis. To
obtain functional metabolic information from the fecal samples, we
measured SCFA concentrations at both timepoints using 13 samples from
AW subjects (these were the only remaining samples from the AW
subjects). An equal number of controls were also chosen for fecal SCFA
measurement from the same subset of samples selected for qPCR analysis.
To identify metabolic differences in urine at 3 and 12 months, samples
from 16 AW and 19 control subjects were processed for metabolomics
analysis, based on the availability of urine samples from the subset original-
ly chosen for qPCR analysis. Although the sample size for both phenotypes
(AWs and controls) decreased for SCFA and metabolomics analysis, an
exact logistic regression model was used to confirm that the control and
AWsubsets used for these analyseswere representative of the larger cohort.
One subject was excluded from this model because of lack of clinical data
(nAW= 21, ncontrols = 74); however, for other statistical analyses, no human
samples were excluded (tables S9 to S13).

On the basis of the findings of the human study, we then tested if the
presence of these four bacteria would alter the development of lung in-
flammation in the OVA experimental mouse model of asthma. This
model has been shown to be a good indicator of early-life gut microbe–
induced changes in lung inflammation (11, 27). Mice were inoculated
with stool from one AW subject or with AW stool + FLVR found to
be lower in the human subjects. The mice supplemented with these four
bacterial genera displayed significantly decreased lung inflammation. The
sample size in animal experiments (nAW= 18, nAW+FLVR = 28) was based
on previous experience with thismodel. Results are a combination of two
separate experiments. Total BAL counts and inflammation scoring were
assessed in a blinded fashion. Outliers for mouse experiments were de-
tected and excluded using the ROUT method (Q = 1%) in GraphPad
Prism (n = 1 to 4).

CHILD Study design, skin prick testing, and sample selection
The CHILD Study is a multicenter longitudinal, prospective, general
population birth cohort study following infants from pregnancy to
age 5 years, with a total of 3624 pregnant mothers recruited at four sites
acrossCanada (Vancouver, Edmonton,Manitoba, andToronto).Detailed
characteristics of theCHILDStudyhavebeenpreviouslydescribed (40–42).
Briefly, questionnaires were administered at recruitment, at 36 weeks
of gestation, at 3, 6, 12, 18, 24, and 30months, and at 3, 4, and 5 years. In
this way, data are obtained related to environmental exposures, psycho-
social stresses, nutrition, and general health. In addition, at ages 1, 3, and
5 years, questionnaires validated in the International Study of Asthma
and Allergies in Childhood (ISAAC) (43) are completed by the parent
or legal guardian. At age 1, 3, and 5 years, the child is examined for ev-
idence of atopic dermatitis, rhinitis, or asthma. Trained staff performed
skin testing using standardized inhalant allergens and common food
allergens at 1, 3, and 5 years. Five-year data were not included in this
study because it was not available for this entire cohort at the date of
submission. Data up to 3 years of age were used for construction of
theAPI and in determiningwhich childrenwere diagnosedwith asthma
by 3 years of age (nasthma = 19, ncontrol = 300). The University of British
Columbia/Children’s andWomen’s Health Centre of British Columbia
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Research Ethics Board approved the research protocols for studies on
human samples, and each participating parent or legal guardian gave
signed informed consent.

Inclusion/exclusion criteria
Skin prick test results. At 1 year of age, children enrolled in the

CHILD Study were tested with 10 allergens (Alternaria tenuis, cat hair,
dog epithelium, Dermatophagoides pteronyssinus, Dermatophagoides
farinae, German cockroach, peanut, soybean, egg white, and cow’s milk).
A child was classified as “atopic” if he/she developed a wheal≥2 mm
for any of the 10 allergens tested. Histamine was used as a positive con-
trol and glycerin as a negative control. Subjects that tested negative to
histamine were not included in this cohort unless they tested positive
(with a wheal≥2 mm) for 1 of the 10 allergens listed above. If a subject
tested positive to glycerin, the wheal size for glycerin was subtracted
from the wheal size of any positive allergen response.

Wheeze questionnaires. If the child had wheezed with or without
a cold during the first year of life (recorded via questionnaires an-
swered by parents at 3, 6, and 12 months), the child was included in
the wheezing group. Childrenwere also included in the wheezing group
if the CHILD clinician recorded a wheeze during the 1-year clinical as-
sessment.

Biological samples. Both a 3-month and a 1-year stool sample were
required for each child to be included in this study. For the control
group, subjects from whom additional samples were collected by the
CHILD Study (such as blood samples) were selected over subjects
missing any of these samples.

Of the 3542 childrenmeeting eligibility criteria at birth, 1427 children
had completed the CHILD Study 1-year clinical assessment at the time of
selection.A total of 163 subjectswere excludedbecause of incomplete skin
prick test data or a positive response to glycerin or a negative response to
histamine and all other allergens. The remaining 1264 subjects were
grouped into the four clinical phenotypes—AW (n = 35), atopy only
(n= 150), wheeze only (n= 216), and controls (n= 863)—and assessed
for the availability of a 3-month and a 1-year stool sample [n numbers
for childrenwith3-monthand1-year stool samples available:AW(n=25),
atopy only (n = 112), wheeze only (n = 179), and controls (n = 106)].
Subjects were then excluded from the study if, after preparation and se-
quencing of the 16SDNA, the sequence results were inadequate (that is,
not enough sequence readsper stool sample) [finalnnumbers:AW(n=22),
atopy only (n=87), wheeze only (n= 136), and controls (n= 74)]. Inform-
ative power calculations are challenging given there is little known about
specific links betweenmicrobiota and atopic disease, particularly in the cur-
rent era of bacterial 16S rRNA sequencing.

The subsets of samples for qPCR and PICRUSt analysis included all
but one AW sample, and 19 (1 year) or 20 (3 months) randomly
selected control samples. Thirteen AW and control samples were
submitted for SCFA analysis, and 19 AW and 16 controls were
submitted formetabolomics analysis. An exact logistic regressionmodel
was used to confirm that all subsets used in this study were representa-
tive of the entire cohort (nAW = 22, ncontrol = 74). The number of
samples selected depended on the availability of the fecal or urine
samples, which tended to be very limited in this study of human infants.

Asthma Predictive Index
Subjects in the sample cohort (n = 319) were also classified according to
the API (19) (napi = 33, ncontrol = 286). A positive stringent API is
defined by the following criteria: recurrent wheeze between the ages
www.ScienceTra
of 2 and 3 years, together with one of two major criteria or two of three
minor criteria (see below). Additionally, if a child was diagnosed with
asthma at the 3-year clinical assessment, he or she was also included in
the positive API group whether or not he or she met the API criteria.

Recurrent wheezing: Recurrent wheezing is defined as ≥3 episodes
of wheezing between the ages of 2 and 3 years. Questionnaires at 24 and
30months, and 3 years of agewere used to quantify the number ofwheeze
episodes between 2 and 3 years.

Major criteria: Parental history of asthma (from either parent) or
physician-diagnosed childhood atopic dermatitis between the ages of
2 and 3 years.

Minor criteria: ≥4% eosinophilia, any episodes of wheezing apart
from colds after 2 years, and physician-diagnosed allergic rhinitis at
3 years of age.

Definitions of clinical variables
Antibiotic exposure from birth to 1 year: “Yes” defined as receiving one
or more antibiotics from birth to 1 year of age. “No” defined as having
received no antibiotics from birth to 1 year of age.

Antibiotic exposure from birth to 3months: “Yes” defined as receiv-
ing one ormore antibiotics from birth to 3months of age. “No” defined
as having received no antibiotics from birth to 3 months of age.

Atopic dermatitis or eczema at 1 year: “Yes” defined as being diag-
nosed with atopic dermatitis or eczema (a chronic skin disease charac-
terized by itchy, inflamed skin) by a CHILD clinician at the 1-year
clinical assessment or a non-CHILD clinician (reported in the 1-year
CHILD health questionnaire). “No” defined as no diagnosis.

Atopic dermatitis or eczema at 3 months: “Yes” defined as being di-
agnosed with atopic dermatitis or eczema (a chronic skin disease
characterized by itchy, inflamed skin) by a non-CHILD clinician (re-
ported in the 3-month CHILD health questionnaire). “No” defined as
no diagnosis.

Feeding methods (at 1 year): “Breast-fed” defined as breast-fed for
the first 12 months of life (as reported by parents in the 1-year CHILD
nutrition questionnaire). “Not breast-fed” defined as breast-fed for less
than 12 months of age.

Feeding methods (at 3 months): “Breast-fed” defined as breast-fed
for the first 3 months of life (as reported by parents in the 3-month
CHILD nutrition questionnaire). “Not breast-fed” defined as breast-
fed for less than 3 months of age.

16S microbial community analysis
DNA was extracted from ~50 mg of stool. Samples were mechanically
lysed using MO BIO dry bead tubes (MO BIO Laboratories) and the
FastPrep homogenizer (FastPrep Instrument, MP Biochemicals) before
DNA extraction with the Qiagen DNA Stool Mini Kit.

All samples were amplified by PCR in triplicate using barcoded
primer pairs flanking the V3 region of the 16S gene (table S7) as previ-
ously described (44). Each 50 ml of PCR contained 22 ml of water, 25 ml of
TopTaqMasterMix, 0.5 ml of each forward and reverse barcoded prim-
er, and 2 ml of template DNA. The PCR program consisted of an initial
DNAdenaturation step at 95°C for (5min), 25 cycles ofDNAdenatura-
tion at 95°C (1min), an annealing step at 50°C (1min), an elongation step
at 72°C (1 min), and a final elongation step at 72°C (7 min). Controls
without template DNA were included to ensure that no contamination
occurred. Amplicons were run on a 2% agarose gel to ensure adequate
amplification. Amplicons displaying bands at ~160 bp were purified
using the illustraGFXPCRDNAPurification kit. Purified samples were
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diluted 1:50 andquantified usingPicoGreen (Invitrogen) in theTECAN
M200 (excitation at 480 nm and emission at 520 nm).

Illumina sequencing. Pooled PCR ampliconswere diluted to 20 ng/ml
and sequenced at the V3 hypervariable region using Hi-Seq 2000 bi-
directional Illumina sequencing and Cluster Kit v4 (Macrogen Inc.).
Library preparation was done using TruSeq DNA Sample Prep v2 Kit
(Illumina) with 100 ng of DNA sample and QC library by Bioanalyzer
DNA 1000 Chip (Agilent).

Bioinformatics. Sequences were preprocessed, denoised, and quality-
filtered by size using Mothur (45). Representative sequences were clus-
tered into OTUs using CrunchClust (46) and classified against the
Greengenes Database (47) according to 97% similarity. Any OTUs
present less than five times among all samples were removed from the
analysis.

Quantitative PCR
To validate sequencing results, the abundance of specific intestinal
bacterial genera was measured in the16S ribosomal DNA (rDNA)
V3 amplicons using group-specific 16S rRNA gene primers for the
following genera: Lachnospira, Veillonella, Rothia, Faecalibacterium,
and Bifidobacterium (table S8). All AW samples and a randomly se-
lected, but representative equal number of control samples were analyzed
by qPCR. All reactions were carried out in the 7500 Fast Real-Time Sys-
tem (Applied Biosystems) or the ViiA 7 Real-Time PCR System (Life
Technologies Inc.). Each 10-ml reaction contained 5 ml of iQ SYBRGreen
Supermix (Bio-Rad), 0.1 ml of each forward and reverse primer, 0.8 ml of
nuclease-free water, and 4 ml of the V3 amplicon. The qPCR program
consisted of an initial step at 95°C (15min), 40 cycles of 15 s at 94°C, 30 s
at 60°C, and 30 s at 72°C, and a final cycle of 95°C at 15 s, 60°C at 1min,
95°C at 15 s, and 60°C at 15 s. Per primer set, at least two dilutions were
run per sample and all dilutions were run in duplicate. Samples were
normalized according to the DCT method using total 16S rDNA (eu-
bacteria; table S8) as the reference gene.

PICRUSt
We used PICRUSt (48) to generate a profile of putative functions (via
metagenome prediction) from the 16S rRNAOTU data. Predicted me-
tagenomes from the same human samples analyzed by qPCR and from
mouse fecal samples were categorized by function at KEGG Orthology
level 3. To test for significant differences in functional category abun-
dances between the AWand control samples, we used theWelch’s t test
implementation of STAMP (49). We also tested for differentially abun-
dant metagenomes with DESeq2 (50) under default settings. The test
statistics’P valueswere adjusted formultiple testing using the procedure
of Benjamini and Hochberg (51) (FDR threshold, 5%).

SCFA analysis
Human andmouse fecal samples were combined with 25% phosphoric
acid, vortexed, and centrifuged until a clear supernatant was obtained.
Supernatants were submitted for GC analysis to the Department of Ag-
ricultural, Food and Nutritional Science of the University of Alberta.
Only 13 AW samples contained enough material for this analysis,
and 13 additional control samples were randomly selected for this anal-
ysis. Samples were analyzed as previously described (52) withmodifica-
tions. Briefly, samples were combined with 4-methyl-valeric acid as an
internal standard, and 0.2 ml was injected into the Bruker SCION 456
gas chromatograph, using a Stabilwax-DA 30-m × 0.53-mm × 0.5-mm
column (Restek). A standard solution containing acetic acid, proprionic
www.ScienceTran
acid, isobutyric acid, butyric acid, isovaleric acid, valeric acid, and ca-
proic acid, combined with internal standard, was injected in every run.

The PTV (programmable temperature vaporization) injector and
FID (flame ionization detector) detector temperatures were held at
250°C for the entire run. The oven was started at 80°C and immediately
ramped to 210°C at 45°C/min, where it was held for 5.11min. Total run
timewas 8.00min. Heliumwas used at a constant flow of 20.00ml/min.
Sample concentrations were normalized to the wet weight of feces.

Urine metabolomics
Two hundred microliters of urine per subject was submitted to Meta-
bolon Inc. for metabolomic analysis. From the subset of samples
selected for qPCR analysis, 19 AW and 16 control urine samples were
available formetabolomics analysis. Sample preparationwas carried out
as described previously (53). Briefly, recovery standards were added
before the first step in the extraction process for quality control pur-
poses. Proteins were precipitated for removal with methanol under vig-
orous shaking for 2 min (Glen Mills Geno/Grinder 2000) followed by
centrifugation. The resulting extract was divided into five fractions: one
for analysis by UPLC-MS/MS (positive ionization), one for analysis by
UPLC-MS/MS (negative ionization), one for the UPLC-MS/MS polar
platform (negative ionization), one for analysis byGC-MS, andone sam-
ple was reserved for backup.

The following controls were analyzed with the experimental
samples: samples generated from a pool of human urine extensively
characterized byMetabolon Inc. and a cocktail of standards spiked into
every analyzed sample, which allowed instrument performance mon-
itoring. Experimental samples and controls were randomized across
the platform run.

MSanalysis. Extractswere subjected to eitherGC-MSorUPLC-MS/
MS. TheUPLC-MS/MS platformused aWaters ACQUITYUPLCwith
Waters UPLCBEHC18 2.1 × 100mm, 1.7-mmcolumns, and a Thermo
Scientific Q Exactive high-resolution/accurate mass spectrometer in-
terfaced with a heated electrospray ionization (HESI-II) source and
Orbitrapmass analyzer operated at 35,000mass resolution. The sam-
ple extract was dried and then reconstituted in acidic or basic liquid
chromatography–compatible solvents, each of which contained eight or
more injection standards at fixed concentrations to ensure injection and
chromatographic consistency. Extracts reconstituted in acidic condi-
tions were gradient-eluted using water and methanol containing 0.1%
formic acid, whereas the basic extracts, which also usedwater/methanol,
contained 6.5 mM ammonium bicarbonate. A third aliquot was ana-
lyzed via negative ionization following elution from a hydrophilic inter-
action liquid chromatography (HILIC) column (Waters UPLC BEH
Amide 2.1 × 150 mm, 1.7 mm) using a gradient consisting of water
and acetonitrile with 10 mM ammonium formate. The MS analysis al-
ternated betweenMS and data-dependentMS2 scans using dynamic ex-
clusion, and the scan rangewas from80 to 1000mass/charge ratio (m/z).

The samples destined for analysis by GC-MS were dried under vac-
uum desiccation for a minimum of 18 hours before being derivatized
under dried nitrogen using bistrimethyl-silyltrifluoroacetamide. Deriv-
atized samples were separated on a 5% diphenyl/95% dimethyl poly-
siloxane fused silica column (20m×0.18mm internal diameter; 0.18-mm
film thickness) with helium as carrier gas and a temperature ramp from
60° to 340°C in a 17.5-min period. All sampleswere analyzed on aTher-
mo Finnigan Trace DSQ fast-scanning single-quadrupole MS using
electron impact ionization and operated at unit mass resolving power.
The scan range was from 50 to 750 m/z.
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Compound identification, quantification, and data curation. Meta-
bolites were identified by automated comparison of the ion features in
the experimental samples to a reference library of chemical standard
entries that included retention time, molecular weight (m/z), preferred
adducts, and in-source fragments, as well as associated MS spectra, and
curated by visual inspection for quality control using software developed
at Metabolon (54). Identification of known chemical entities is based on
comparison to metabolomic library entries of purified standards. Com-
mercially available purified standard compounds have been acquired
and registered into the software system known as LIMS used for both
the UPLC-MS/MS and GC-MS platforms. Peaks were quantified using
area under the curve. Rawarea counts for eachmetabolite in each sample
were normalized to correct for variation resulting from instrument inter-
day tuning differences by the median value for each run day, therefore
setting the median value to 1.0 for each run. Missing values were
imputed with the observed minimum after normalization. All values
were further normalized to the osmolality of each sample.

LPS determination
LPSwas extracted and quantified in a subset of 14 AWand 12 control hu-
man fecal samples collected at 3 months of age. Samples were weighed
and then homogenized using FastPrep homogenizer (FastPrep Instru-
ment, MP Biochemicals) with one small glass bead in each sample. Sam-
ples were then centrifuged at low speed (1200g) to remove debris, and the
supernatant was further centrifuged at high speed (13,000g) for 3 min.
The pellet was resuspended in 100 ml of endotoxin-free phosphate-
buffered saline (PBS). LPS was extracted by the phenol-chloroform
method using an extraction kit (Intron). The extract was used to deter-
mine LPS concentration using the limulus amebocyte lysate chromogen-
ic method (Lonza). Samples were run in triplicate, and concentrations
were determined using a standard curve and normalized to feces weight.

Human microbiota model of experimental
murine allergic asthma

Bacterial inoculumpreparation and inoculation. Frozen feces from
oneAWsubject collected at 3months of agewas used to orally inoculate
GF mice. A fecal slurry was prepared by scraping a frozen piece of fecal
material with a sterile scalpel and combining it with 1ml of PBS reduced
with 0.05% of cysteine-HCl to protect anaerobic species. This type of
adoptive transfer has been shown to be effective in transferring human
microbiota into mice in our laboratory (unpublished observations) and
by others (55). The sample was vortexed and centrifuged at 3000g to
remove debris. Solid cultures of F. prausnitzii [American Type Culture
Collection (ATCC) 27766], V. parvula (ATCC 10790), R. mucilaginosa
(ATCC 49040), and L.multipara (DSM-3073) were grown on fastidious
anaerobe (FA) agar at 37°C under anaerobic conditions. One colony of
each culture was added to 2 ml of liquid FA medium and grown for
24 hours. The cell concentrations of the fecal slurry and the FLVR
culture were calculated by turbidometry at 600 nm and normalized
to optical density of 0.3 with reduced PBS.

Four female and four male 6-week-old GF mice (Swiss Webster)
were purchased from Taconic. Immediately upon arrival, two female
and two male mice were randomly selected to be orally gavaged with
50 ml of the fecal slurry (AW), and the remaining mice were inoculated
with 40 ml of the same fecal slurry combined with 10 ml of the FLVR cul-
ture. Oral gavages with the microbial treatments were repeated on days
3, 7, and 14 after arrival. After the second inoculation, mice were paired
formating. To further increase themicrobial colonization of the F1mice
www.ScienceTran
with the experimental inocula, the abdominal and nipple areas of the
mothers were swabbed with the corresponding bacterial preparations
on days 3 and 7 after birth.

Experimental allergic asthmamodel. Experimental murine allergic
asthma was induced in all F1 mice from two subsequent litters for each
breeding pair, at 7 to 8 weeks of age, as previously described (56) with
minor modifications. Although this model does not fully recapitulate
the phenotype of human allergic asthma, it is a useful model for evalu-
ating many aspects of this lung inflammatory disease. No statistical
methods were used to estimate sample size in animal experiments. A
total of 8 control, 18 AW, and 28 AW + FLVR mice were used in the
two combined experiments. Mice were sensitized intraperitoneally with
10 mg of grade V OVA and 1.3 mg of aluminum hydroxide (both from
Sigma) on days 0 and 7. On days 21, 22, 23, and 24, mice were challenged
intranasally with 50 mg of LPS-free OVA in PBS and, on days 25 and 26,
with 100 mg of gradeVOVA (Sigma). Onday 27,micewere anaesthetized
with ketamine (200 mg/kg) and xylazine (10 mg/kg), and blood was
collected by cardiac puncture. After sacrifice, BALs were performed
by 3 × 1 ml washes with PBS. Total BAL counts were blindly assessed
by counting cells in a hemocytometer. Eosinophils, neutrophils, macro-
phages, and lymphocytes were quantified from Cytospins (Thermo
Shandon) stained with Hema Stain (Fisher Scientific), based on standard
morphological criteria. All protocols used in these experiments were
approved by the Animal Care Committee of the University of British
Columbia.

Determination of serum OVA-specific Igs
OVA-specific IgE, IgG1, and IgG2a in serum were measured by
enzyme-linked immunosorbent assay (Chondrex).

Histology
Lungs were collected and fixed in 10% formalin, embedded in paraffin,
cut longitudinally into 5-mm sections, and stained with hematoxylin
and eosin. Inflammation was blindly assessed from five fields per sec-
tion, each graded on a scale of 1 to 5 (1 = no signs of disease, 5 = severe
disease) for each of the following four parameters (for amaximum score
of 25): (i) peribronchial infiltration, (ii) perivascular infiltration, (iii) pa-
renchymal infiltration, and (iv) epithelium damage.

Cytokines
Lung tissue homogenates were centrifuged twice at 16,000g, and the
supernatants were stored at −80°C. The levels of IL-2, IL-4, IL-6, IL-10,
TNF, IFN-g, and IL-17A were determined using the Cytometric Bead
Array (CBA) assayTH1/TH2/TH17kit (catalog #560485, BDBiosciences).
Levels of IL-5, IL-9, and IL-13 were determined by CBA flex set (cat-
alog #558302, 558348, and 558349, BD Biosciences) according to the
manufacturer’s instructions. Cytokine concentrations were normalized to
protein concentration calculated by the Bradford assay (Sigma). IL-9
and IL-13 analysis did not yield results above the sensitivity limit of
the assay.

Statistical analysis
An exact logistic regression model based on the Markov chain Monte
Carlo sampling (57–59) was developed, and ORs were used to evaluate
the risk associatedwith theAWgroup according to specific clinical data.
ORs and the adjusted lower and upper 95% CIs were calculated
according to the following formula: e(ln(OR)) and e(ln(CI)), respectively.
ln(CI) is equal to the exact upper and lower CIs (table S1). Only subjects
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for which all the data were available were included in the model (nAW =
21, ncontrol = 74). This samemodel was also used to confirm that all sub-
sets of control andAWsamples used in this studywere representative of
the entire cohort (tables S9 to S13).We assessed fecalmicrobial diversity
and the relative abundance of bacterial taxa using phyloseq (60) along
with additional R-based computational tools (61–66) in R-studio
(R-Studio). PCA was conducted using MetaboAnalyst (67, 68) and sta-
tistically confirmed by PERMANOVA (permutational multivariate
analysis of variance) (60). The Shannon diversity index was calculated
using phyloseq (60) and statistically confirmed by Mann-Whitney
(GraphPad Prism software, version 5c). The “mt” function in phyloseq
(60) was used to calculate multi-inference–adjusted P values to identify
differentially abundantOTUs between the 3-month and 1-year samples
and among the four phenotypes: AW, atopy only, wheeze only, and
controls. Differences between the control and AW groups were
determined by Mann-Whitney for qPCR. All SCFAs and urine meta-
bolites were subject to the Shapiro-Wilk test for normality, and differ-
ences between control and AW groups were determined by t test
(glycocholenate sulfate and glycohyocholate) or Mann-Whitney. No
human samples were excluded from statistical tests. For analyses using
human samples, the F test found no significant differences between the
variances of the groups.Differences betweenAW,AW+FLVR, andnaïve
groups inmice experimentsweredeterminedbyANOVAforBALcounts,
BAL cell differentials, histology scoring, lung cytokine, and serum im-
munoglobulin concentrations. All data points in graphs represent
biological replicates. Outliers were detected and excluded from mouse
experimental data only, using the ROUT method (Q = 1%) in GraphPad
Prism (n = 1 to 4). Statistical significance was defined as P ≤ 0.05.
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Fig. S1. Gut microbial and host metabolic changes in the first year of life.
Fig. S2. Human gut microbiota at 3 months and 1 year of age.
Fig. S3. One-year-old gut microbiota by clinical phenotype.
Fig. S4. Relative abundance of bacterial genera at (A) 3 months and (B) 1 year.
Fig. S5. PICRUSt-predicted KEGG functional categories.
Fig. S6. Three-month gut microbiota classified by (A) wheeze/non-wheeze or (B) atopy/non-atopy.
Fig. S7. One-year gut microbiota classified by (A) wheeze/non-wheeze or (B) atopy/non-atopy.
Fig. S8. Microbial-derived functional changes in mice treated with FLVR.
Fig. S9. Heatmap of a biweight correlation (bicor) between BAL total cell counts and the top 30
bacterial OTUs from F1 mice feces at 3 weeks of age.
Fig. S10. Lung cytokine concentration and serum concentration of OVA-specific antibodies.
Table S1. Characteristics of the cohort.
Table S2. Differentially abundant OTUs between 3-month and 1-year samples.
Table S3. Differentially abundant taxa among the four clinical phenotypes at 3 months and
1 year.
Table S4. PICRUSt-predicted top 30 differential KOs (based on P value) in AW and controls
at 3 months and 1 year.
Table S5. Top 30 biochemical pathways (based on P value) of PICRUSt-predicted KOs in AW
and controls at 3 months.
Table S6. SCFAs in feces and urine in AW and controls at 3 months and 1 year.
Table S7. 16S V3 region amplification primers and barcodes.
Table S8. qPCR primer sequences for selected bacterial genera.
Table S9. Exact logistic regression model of qPCR control subset.
Table S10. Exact logistic regression model of metabolomics control subset.
Table S11. Exact logistic regression model of SCFA control subset.
Table S12. Exact logistic regression model of metabolomics AW subset*.
Table S13. Exact logistic regression model of SCFA AW subset*.
Additional Data Tables (separate file)
Additional Data Table S1. PICRUSt-predicted differentially abundant KOs between AW and
controls.
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Additional Data Table S2. PICRUSt-predicted differentially abundant pathways between AW-
and AW + FLVR–treated mice.
Additional Data Table S3. Raw data and P values for all experiments with n < 20.
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prevent the development of asthma in high-risk individuals.
of these microbes. They suggest a window where microbe-based diagnostics and therapeutics may be useful to
bacteria back to germ-free mice decreased airway inflammation, suggesting a potential causative role of the loss 
days of life. They found that certain bacterial genera were decreased in these children. Moreover, adding these
longitudinal human study that infants at risk of asthma have transient gut microbial dysbiosis during the first 100 

 report in aet al.however, it has remained unclear whether these findings hold true in humans. Now, Arrieta 
Changes in the gut microbiota have been implicated in the development of asthma in animal models;
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