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Systems biology is an approach to interrogate complex biological systems through

large-scale quantification of numerous biomolecules. The immune system involves

>1,500 genes/proteins in many interconnected pathways and processes, and a

systems-level approach is critical in broadening our understanding of the immune

response to vaccination. Changes in molecular pathways can be detected using

high-throughput omics datasets (e.g., transcriptomics, proteomics, and metabolomics)

by using methods such as pathway enrichment, network analysis, machine learning,

etc. Importantly, integration of multiple omic datasets is becoming key to revealing novel

biological insights. In this perspective article, we highlight the use of protein-protein

interaction (PPI) networks as a multi-omics integration approach to unravel information

flow and mechanisms during complex biological events, with a focus on the immune

system. This involves a combination of tools, including: InnateDB, a database of curated

interactions between genes and protein products involved in the innate immunity;

NetworkAnalyst, a visualization and analysis platform for InnateDB interactions; and

MetaBridge, a tool to integrate metabolite data into PPI networks. The application of

these systems techniques is demonstrated for a variety of biological questions, including:

the developmental trajectory of neonates during the first week of life, mechanisms in

host-pathogen interaction, disease prognosis, biomarker discovery, and drug discovery

and repurposing. Overall, systems biology analyses of omics data have been applied to a

variety of immunology-related questions, and here we demonstrate the numerous ways

in which PPI network analysis can be a powerful tool in contributing to our understanding

of the immune system and the study of vaccines.

Keywords: systems biology, multi-omic integration, transcriptomics, innate immunity, immune ontogeny, host-

pathogen interaction, drug discovery and repurposing, systems vaccinology

INTRODUCTION

In the field of immunology, a systems biology approach is necessary to understanding the immune
response to vaccination, infection and diseases, since these involve complex interactions between
a large number of genetic, epigenetic, physiological and environmental factors. Systems-level
strategies can ultimately be applied to better understand the molecular changes in humans upon
exposure to a vaccine or an immunotherapeutic, to understand the mechanisms underlying disease
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or pathogenesis, and to characterize the effect(s) of specific
challenges to the immune system (1–5). Omics technologies
offer the ability to measure such aspects in an unbiased way
that is high-throughput and cost-effective. Several omics
methods have been employed in the context of systems
vaccinology (3), including but not limited to, whole genome
sequencing (genomics), RNA-Seq for measuring mRNA levels
(transcriptomics), high-throughput mass spectrometry for
measuring protein levels (proteomics) and metabolite levels
(metabolomics), CHiP-Seq for determining transcription factor
binding sites, ATAC-Seq to identify DNA modification sites
(epigenomics), 16S rRNA sequencing for microbiota profiling
(microbiomics), and equivalent omics analyses performed at
the single-cell level. Recently, there has also been a growing
effort to obtain multiple omics profiles in the same individuals,
since shared insights across omics datasets strengthens links
between underlying biological mechanisms and responses of
interest, and can provide more reliable interpretation of gene
function, higher-level changes and novel insights not observed
in single-omics studies (6–8). Overall, biological samples can
be manipulated to generate numerous omics datasets, and can
be applied to study how our immune systems elicit effective,
therapeutic and/or pathological responses.

A key challenge in systems biology is building the appropriate
bioinformatics tools to integrate omics datasets, ultimately
enabling the correlation of global changes with the underlying
biological events that drove those changes. Statistical and
machine learning approaches have been applied to omics datasets
[reviewed previously (9–11)] to identify sets of molecular features
that (i) are dysregulated/correlated with observed phenotypes,
(ii) can be used as biomarkers to predict observed phenotypes,
or (iii) can be targeted by drugs for improved therapies. A wide
array of tools are available to run single- or multi-omics analysis
pipelines (12), including commercial platforms and more
recently published “self-serve” platforms [e.g., OmicsNet (13),
OmicsPlayground (14)]. Typically, such methods interrogate
information in either a supervised or unsupervised manner;
supervised methods identify differences between labeled omics
data from different conditions (e.g., responders vs. non-
responders or treated vs. untreated) while, unsupervisedmethods
reveal global patterns of gene dysregulation without any labels.

Downstream characterization of dysregulated molecules
can further our understanding of underlying biological
mechanisms at play. This can be achieved by interrogating
curated functional genomics information from databases of
gene ontologies (functional descriptions), pathways, known
interactors, transcription factor binding sites (TFBS) upstream
of dysregulated genes, etc. through various enrichment analyses.
However, a large proportion of genes have not been assigned
to canonical pathways in pathways databases (such as KEGG
or Reactome), so pathway enrichment limits the ability of such
approaches to reveal novel insights (15).

Abbreviations: CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane regulator;

DE, differentially expressed; DOL, day of life; IDR, innate defense regulator; iNTS,

invasive non-typhoidal Salmonella; MAP, mitogen-activated; PPI, protein-protein

interaction; TFBS, transcription factor binding site.

The use of biological networks is a powerful approach to
integrate multi-omics data to identify novel biological insights
(15–18). To characterize the role of individual molecular features
in larger cellular processes and global changes using networks
involves either overlaying omics data on experimentally-
derived known networks [e.g., protein-protein interaction (PPI)
networks], or by inferring networks directly from the data
[e.g., co-expressed genes (19)], the strengths/limitations of which
have been reviewed previously (15). A few commonly used
biological networks along with related resources and tools are
summarized in Table 1. The application of PPI networks to
interrelate dysregulated genes is a very powerful method for
revealing the systems-level flow of information through key
hubs (highly connected protein nodes) and subnetworks. Because
PPIs include direct, metabolic, and regulatory interactions
between proteins, they essentially chart potentially biologically
relevant, i.e., functional, interconnections. This can enable the
determination of emergent properties, which are essentially
new biological insights into the processes driving the observed
transcriptional differences. The results from a PPI network
analysis are always framed as hypotheses rather than knowledge
per se, and must be eventually tested using downstream wet lab
experiments (15).

In this article, we provide an overview of the philosophies and
methodologies that can be employed in the analysis of omics data,
especially with regards to integration of omics datasets using an
unsupervised network analysis approach. Examples are provided
of how such analyses enable novel hypothesis generation for: (a)
immune system development, (b) mechanisms of host-pathogen
interactions, (c) discovery of mechanism-based biomarkers, and
(d) strategies to define prospective new interventions based
on drug repurposing. While the methods are somewhat biased
toward the study of innate immune and inflammatory responses,
it is worth mentioning that “innate immunity instructs adaptive
immunity” (63) in that (i) the effectors of adaptive immunity
are often innate immune mechanisms, (ii) many of the pathways
involved are the same, and (iii) vaccine adjuvants that improve
adaptive immune responses boost innate immunity. Therefore,
the tools we describe have value in investigating adaptive
immunity as well as human genetic diseases/conditions with an
underlying inflammatory pathology.

SYSTEMS TOOLS FOR NETWORK-BASED
ANALYSES USING PPIS

InnateDB (43, 44) and other International Molecular Exchange
(IMEx) consortium databases (42) provide the basis for
understanding biological connections in cells according to
known interactions between molecular elements, such as
proteins. InnateDB is a publicly available database (www.
innatedb.com) focused on elucidating the genes, proteins, and
molecular “interactome” of the innate immune response, with
an emphasis on curation of experimentally-validated PPIs
and signaling pathways in human, mouse and bovine. The
interactome can be used to understand the interplay between
multi-omics datasets that measure different parts of a larger
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TABLE 1 | Examples of functional biological information that can be represented

using networks, along with corresponding databases/repositories and

supplementary data analysis tools that can be used to assess the functional data

in high-throughput omics datasets.

Type of functional

information

Select databases/

repositories

Supplementary

Omic-data analysis

tools

Metabolic pathways,

reactions and associated

enzymes and transporters

Kyoto Encyclopedia of

Genes and Genomes

(KEGG) (20)

MetaBridge (21)

Reactome (22) OmicsPlayground (14)

Panther pathway database

(23)

ReactomePA (24)

Gene Ontology (25) SIGORA (26)

Edinburg Human Metabolic

Network (27)

iMAT (28)

Recon3D (29) INIT (30)

iHsa (31) mCADRE (32)

BioModels (33) TIMBR (31)

Gene regulatory networks

(interactions between

transcription factors and their

target genes)

Encyclopedia of DNA

elements (ENCODE)

(34, 35)

JASPAR (36)

TRANSFAC (37)

MRNET (38)

ARACNE (39)

iRegulon (40)

dynGENIE3 (41)

Protein-protein interaction

(PPI) networks (includes

direct, metabolic, and

regulatory interactions)

International Molecular

Exchange (IMEx)

Consortium (42),

which includes:

InnateDB (43, 44)

Biomolecular Interaction

Network Database (BIND)

(45)

Database of Interacting

Proteins (DIP) (46)

Molecular INTeraction

Database (MINT) (47)

MIntAct (48)

The Biological General

Repository for Interaction

Datasets (BioGRID) (49)

NetworkAnalyst (50–52)

OmicsNet (13)

PPIExp (53)

Signaling networks

(interactions involved in a cell’s

response to its environment)

KEGG (20)

Reactome (22)

STKE (54)

TRANSPATH (55)

ReactomePA (24)

Drug targets (interactions

between drugs and their

cellular targets)

DrugBank (56)

Therapeutic target database

(TTD) (57)

SuperTarget (58)

STITCH (59)

ChEMBL (60)

BindingDB (61)

KEGG (20)

DINIES (62)

system of physical, metabolic, and regulatory networks. For
example, human TRAF6 and MyD88 are usually defined
as having a role in the major TLR4 to NFκB signaling
pathway of innate immunity. However, in InnateDB, they
are experimentally documented to interact with 398 and 129
proteins, respectively, in humans. This means that there is a
massive potential for these proteins to bridge and/or participate

in multiple biological pathways when activated by innate
immune stimuli.

InnateDB is an important tool in immunology as evidenced
by the >6,000,000 hits from more than 55,000 visitors
annually. While all known pathways (>3,500) and molecular
interactions (318,000 in human) are present, the emphasis on
innate immunity is achieved through the contextual review,
curation and annotation of molecular interactions and pathways
involved in innate immunity. To date, the InnateDB curation
team has reviewed more than 5,200 publications annotating
>27,000 molecular interactions of >9,400 separate genes in
rich detail including annotation of the cell, cell-line and
tissue type; the molecules involved; the interaction detection
method; etc. By including interaction and pathway data relevant
to all biological processes, a much broader perspective of
innate immunity can be achieved, especially since an effective
innate immune response requires the coordinated efforts of
many important processes including the endocrine, circulatory,
and nervous systems (64). Additionally, it becomes possible
to investigate any biological signaling process of interest
beyond the immune system, as well as inflammation and
adaptive immunity.

InnateDB facilitates systems-level analyses by enabling
the integration, analysis and visualization of user-supplied
quantitative data, such as gene expression data, in the context
of molecular interaction networks and pathways. This includes
the statistically robust analysis of overrepresented pathways,
interactomes, ontologies, TFBS, and networks. One can, for
example, refine the network to show only molecular interactions
between a list of differentially expressed (DE) genes (and
their encoded products) or view all potential interactors
regardless of whether they are DE. This can aid in the
identification of important nodes that may not be regulated
transcriptionally or which are expressed at an earlier or later
time. Networks derived from InnateDB can be interactively
visualized using the Cerebral plug-in for Cytoscape (65) to
generate biologically intuitive, pathway-like layouts of networks,
or in a more recently developed tool, NetworkAnalyst (50–
52). NetworkAnalyst is an extremely fast network analysis and
visualization tool for the analysis of gene expression data in
the context of PPI networks. In addition, MetaBridge (21) is a
tool that can be used for the integration of metabolite-protein
interactions into these existing networks. In combination,
these tools can be used to perform multi-omics integration
of transcriptomics, proteomics, and metabolomics data in an
unsupervised manner.

In addition to these outlined methods, there are
bioinformatics tools available for performing other types
of network analyses specifically for studying the immune
system. Examples include immuneExpresso (66), a data
mining tool built as part of Immport to capture inter-
cell interactions, and Ontogenet (67), a component of the
ImmGen database enabling construction of gene regulatory
networks based on sets of co-expressed genes. Such tools
can be useful in revealing novel inter-cell interactions
or regulatory factors, respectively, but ultimately may
be too limited in scope for a systems-level analysis.
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Thus, we focus here on how PPI-based network analysis
tools can be applied to better understand human health
and disease.

MECHANISTIC INSIGHTS INTO HUMAN
IMMUNE DEVELOPMENT

Most recently, as a part of the EPIC-HIPC consortium, we
published a study that revealed a robust developmental trajectory
of immune ontogeny during the first week of life in newborns
using a multi-omics integration approach (9). Transcriptomic,
proteomic, and metabolomic data were derived from <1ml of
blood collected from West African (The Gambia) neonates at
two time points: day of life (DOL) 0 and a second DOL, either
1, 3, or 7.

Importantly, through this study, we were able to show
that multi-omics integration using PPI networks (through
NetworkAnalyst, InnateDB, and MetaBridge) provided similar
biological insights, but greater depth, when compared to data-
driven supervised integration approaches [namely, DIABLO
(68) and Multifactorial Response Network (MMRN) (69, 70)].
Major observations from this study revealed that the first
week of life is highly dynamic; DOL0 and DOL1 were
quite similar with few DE genes, but by DOL3, 1,125 DE
genes were detected, and 1,864 DE genes by DOL7. These
represented several key pathways in immune development,
mainly centered around interferon signaling, the complement
cascade, and neutrophil activity. These have previously been
shown to play a role in the newborn immune response to
infection, but until this study were not identified as central
to ontogeny in the first week of life. Importantly, these
pathways and nearly 60% of transcriptomic changes were
confirmed in a second independent cohort of neonates from
Papua New Guinea/Australasia, revealing that neonatal immune
development is not random, but follows a precise and possibly
purposeful age-specific path.

An unsupervised PPI network was used to integrate the
transcriptomic, metabolomics, and proteomic data to reveal a
single functional network, highlighting that individual omics
datasets are complementary, reporting different facets of the
same biological processes. For example, both the transcriptomic
and proteomic data confirmed the increase in type I interferon-
related functions and the regulation of complement cascades.
Importantly, this integration also revealed novel nodes in the
PPI network that were not identified by any single-omics
dataset on its own, representing novel biological insights,
including changes in cellular replication machinery, creatinine
metabolism, fibrin clotting cascade, adaptive immunity markers
and phagosome activity.

Thus, these systems biology approaches allowed novel
insights into the immune developmental trajectory during the
first week of life in newborns. Further studies are being
conducted to provide insights into the mechanistic differences
in the susceptibility of neonates to infection-related disease or
death during this critical phase of life. Also, in the context

of vaccinology, an integrative systems biology approach is
being used to reveal mechanistic insights into the molecular
determinants of vaccination efficacy, while taking into account
this developmental trajectory.

MECHANISTIC INSIGHTS INTO
HOST-PATHOGEN INTERACTIONS

Systems biology methods have also been leveraged to study
host-pathogen interactions (71). One example is of infection
by the obligate human intracellular pathogen Chlamydia
trachomatis, the major cause of bacterial sexually-transmitted
diseases (STDs) and preventable blindness worldwide. This
involved a study that coupled transcriptomics and proteomics
to assess the macrophage responses to infection with C.
trachomatis (72). Macrophages were derived from human
induced pluripotent stem cells (iPSdMs), which share >95%
similarity in terms of gene expression with primary human
blood monocyte-derived macrophages, and were able to
support the growth of C. trachomatis intracellularly to mimic
infection in-vitro.

Pathway analysis of 2,029 DE genes (from transcriptomics)
and 307 DE proteins (from proteomics) at 24 h post-
infection, revealed strong interferon α, β, and γ responses,
and dysregulation of various Toll-like receptor pathways,
the endosomal/vacuolar pathway, energy metabolism, and
metabolism of amino acids and nucleotides and inhibition of
translation. Most significantly upregulated were genes associated
with type I interferon signaling, including key transcription
factors such as interferon regulatory factors (IRF)-1, 3, and
7, which are known to contribute to the regulation of type I
interferons during Chlamydia infection.

Importantly, IRF5 and IL-10RA, not previously characterized
for their role in Chlamydia infection, were identified as key
players in limiting infection in macrophages. Indeed, IRF5−/−

and IL-10RA−/− mutant iPSDM cells were both shown to have
increased susceptibility to C. trachomatis infection. These results,
along with numerous other published studies [e.g., (73–77)],
demonstrate that multi-omics integration using PPI networks
can reveal novel insight into the factors that play a significant role
in the host immune response to infections.

MECHANISM-BASED BIOMARKERS FOR
DISEASE DIAGNOSIS AND PROGNOSIS
PREDICTION

Systems biology analyses have also led to insights into
mechanisms underlying disease prognosis and prediction of
diagnostic biomarkers. One such study of the enteric pathogen
Salmonella enterica sv. Typhimurium (78) involved the use of
transcriptomics to compare gene expression in HIV patients with
and without severe invasive non-typhoidal Salmonella (iNTS)
infections, as well as HIV patients with other acute bacterial
infections (including E. coli and Streptococcus pneumoniae).
Initially, 1,200 genes were upregulated in HIV patients with
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iNTS and with other acute bacterial infections, compared to
HIV patients without a bacterial infection. However, genes
upregulated in patients with non-Salmonella acute infections
showed enrichment for pathways typically associated with innate
immune/inflammatory responses, while conversely the gene
expression response in patients with iNTS could be explained
by upregulation of genes that are associated with suppression of
inflammation (NFKBIB, PI3K, REL, SIGIRR, SOCS4, SOCS7).
This lack of innate immune response and viral signature, which
was subsequently shown to be consistent with increased viral load
(79), leading to insights into the poor prognosis of HIV patients
with iNTS.

These types of analyses were also used to explore immune
manipulation using host defense (antimicrobial) peptides. Such
peptides selectively modulate the innate immune response and
protect against infection, and are produced by many organisms
to defend against infections (80). Furthermore, novel small
innate defense regulator (IDR) peptides have been shown
to be effective in animal models against antibiotic resistant
bacteria, tuberculosis, cerebral malaria, pre-term birth and
inflammation (81, 82). To better understand the cellular cascade
that occurs after these IDR peptides enter the cell, transcriptional
changes were assessed in human monocytes and peripheral
blood mononuclear cells (83). The biological relevance of
these gene expression changes was assessed using pathway
over-representation, TFBS analysis, and network analysis with
NetworkAnalyst, implicating 11 pathways including the p38,
Erk1/2, and JNK mitogen-activated (MAP)-kinases, NFκB, two
Src family kinases, and more than 15 transcription factors
[including NFκB (most subunits), Creb, IRF4, AP-1, AP-2, Are,
E2F1, SP1, Gre, and STAT3]. NetworkAnalyst showed that some
of the top connected hub proteins within networks constructed
from dysregulated genes were involved in the functioning of
MAP kinases and induction of chemokines, anti-inflammatory
pathways particularly TGFβ, and type I interferon responses.
These highly connected hubs reveal mechanistic insights and
could potentially represent diagnostic or treatment biomarkers.
Ultimately, a similar approach can be utilized to evaluate any
agent perturbing cellular function, including immunomodulators
and vaccines, and can define biomarkers differentiating between
responders and non-responders.

DRUG DISCOVERY AND REPURPOSING

Systems biology techniques have been applied to aid in
drug discovery and repurposing of existing agents for the
treatment of cancers, bacterial and viral infections, and genetic
disorders (84). One such study aimed at finding better
therapeutics for cystic fibrosis (CF) utilized transcriptomics to
study immortalized CFTR−/− (cystic fibrosis transmembrane
regulator) epithelial cells stimulated for hyperinflammation,
a state known to lead to deterioration of lung function
in CF patients (85). Genes differentially expressed between
CFTR−/− cells and corrected variants were submitted to
InnateDB for analysis and integration with PPI networks.

This revealed the interconnectivity of the CFTR and innate
immune networks through the PRKAA1 (AMP kinase)/AKT1
and HSPB1 pathways. Genes within this network were then
submitted to DrugBank (86), allowing for the identification of
the diabetes drug Metformin as an AMP kinase activator, which
was then tested in-vitro and shown to reduce inflammation
by ∼50%. DE genes between CFTR−/− cells and corrected
variants also included 54 genes involved in autophagy. In
disease states, autophagy is an adaptive response to stress
that favors infection survival and resolution (87). Follow up
studies confirmed that CFTR mutant cells demonstrated arrested
autophagy. It was then demonstrated that the antimicrobial
peptide IDR-1018 resolved this arrested autophagy state and
reduced inflammation. These genes also revealed a strong
upregulation of ER stress and unfolded protein response
pathways, through activation of the IRE-1 pathway (88).
Follow up studies showed that salubrinal, an inhibitor of
negative regulator GADD34, upregulated this pathway and
suppressed inflammation. Thus, through these systems biology-
based studies, novel pharmaceuticals (IDR-1018) and 2 existing
drugs (Metformin and salubrinal) were identified as potential
treatments for CF-related hyperinflammation. As such, along
with numerous other studies [e.g., (89–92)], it has been
shown that integrating omics datasets using resources such as
InnateDB and DrugBank can reveal potential drug targets for
improved therapies.

DISCUSSION AND THE FUTURE

The analyses outlined in this article merely scratch the surface
of what is possible using systems biology and high-throughput
omics techniques to study the immune system, e.g., the major
tools described here (43, 44, 50–52) have been used and
cited more than 1,500 times. The above-described examples
highlight that using unbiased multi-omics experiments in
conjunction with incisive bioinformatics tools, such as PPI
network integration, one can go beyond the hypothesis-testing
scientific method to use unbiased omics data to generate
fundamentally new hypotheses and develop new biological
insights. Ultimately such studies should lead to the development
of novel diagnostics, individualized therapies for diseases and
vaccines. Furthermore, systems biology approaches can provide
invaluable insights to inform the stratification of individuals
with the same syndrome but different underlying mechanisms,
the diagnosis of disease and/or flare-ups, ongoing development
of new vaccines and/or adjuvants as well as immune-based
therapeutics providing insights into the optimal strategies for
delivery of interventions.
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