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Abstract

Background

Host immune responses during late-onset sepsis (LOS) in very preterm infants are poorly

characterised due to a complex and dynamic pathophysiology and challenges in working

with small available blood volumes. We present here an unbiased transcriptomic analysis of

whole peripheral blood from very preterm infants at the time of LOS.

Methods

RNA-Seq was performed on peripheral blood samples (6–29 days postnatal age) taken at

the time of suspected LOS from very preterm infants <30 weeks gestational age. Infants

were classified based on blood culture positivity and elevated C-reactive protein concentra-

tions as having confirmed LOS (n = 5), possible LOS (n = 4) or no LOS (n = 9). Bioinformat-

ics and statistical analyses performed included pathway over-representation and protein-

protein interaction network analyses. Plasma cytokine immunoassays were performed to

validate differentially expressed cytokine pathways.

Results

The blood leukocyte transcriptional responses of infants with confirmed LOS differed signifi-

cantly from infants without LOS (1,317 differentially expressed genes). However, infants

with possible LOS could not be distinguished from infants with no LOS or confirmed LOS.

Transcriptional alterations associated with LOS included genes involved in pathogen recog-

nition (mainly TLR pathways), cytokine signalling (both pro-inflammatory and inhibitory

responses), immune and haematological regulation (including cell death pathways), and

metabolism (altered cholesterol biosynthesis). At the transcriptional-level cytokine

responses during LOS were characterised by over-representation of IFN-α/β, IFN-γ, IL-1
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and IL-6 signalling pathways and up-regulation of genes for inflammatory responses. Infants

with confirmed LOS had significantly higher levels of IL-1α and IL-6 in their plasma.

Conclusions

Blood responses in very preterm infants with LOS are characterised by altered host immune

responses that appear to reflect unbalanced immuno-metabolic homeostasis.

Introduction

Neonatal sepsis results in an estimated 0.5–1 million infant deaths globally each year. Preterm

infants, particularly those born very preterm (<32 weeks gestation), account for more than a

third of the mortality within the first month of life [1–3]. Late-onset sepsis (LOS), with onset

after 72h of age, is the most common form of sepsis affecting preterm infants, occurring in

more than 20% of those born very preterm. The majority of LOS is due to ubiquitous and

often low-virulence commensals of the gastrointestinal tract and skin, especially coagulase

negative staphylococci such as Staphylococcus epidermidis, suggesting that the preterm

immune system may be developmentally immature [4–6].

The preterm infant immune system has both quantitative and functional impairments; with

diminished protective function due to anatomical barriers, impaired innate immune defences

including reduced pro-inflammatory cytokine production, antigen presentation and phagocy-

tosis of innate cells, and delayed adaptive immune responses due to limited antigenic exposure

prior to birth [7–11]. In addition, immune cells of preterm infants have also shown impair-

ments in cellular metabolism that limit innate immune responses during infection [12]. These

immune-metabolic deficiencies contribute to an increased risk of preterm infants acquiring

infection and ultimately, demonstrating dysregulated inflammatory responses that lead to neo-

natal sepsis [7, 13–15].

There has been recent interest in understanding neonatal sepsis pathophysiology at the

molecular level. Smith et al (2014) identified a 52-gene immune-metabolic network that could

predict bacterial infections in preterm and term neonates. Cernada and colleagues found 554

differentially expressed genes that discriminated VLBW septic cases from controls (who

showed no signs of infection)[16, 17]. Wynn and colleagues found significant differences in

transcriptional host responses between patients with early-onset sepsis and LOS, suggesting

that accounting for timing of sepsis is critical in transcriptional profiling studies of neonates

[18]. However, no study to date has specifically used transcriptome sequencing (RNA-Seq) to

investigate immuno-metabolic host transcriptional responses during LOS in very preterm

infants, in whom the incidence of sepsis is highest.

In this pilot study, we used RNA-Seq to determine whole blood transcriptional responses of

very preterm infants with suspected or confirmed LOS. Our findings are the first to character-

ise the underlying functional biology of blood leukocyte transcriptional responses associated

specifically with LOS immunopathology in very preterm infants.

Methods

Ethics statement

The study was approved by the institutional Human Research Ethics Committee at King

Edward Memorial Hospital for Women, Perth, Western Australia (HREC reference:
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2014091EW). Written informed consent from parents or guardians was obtained prior to

study participation.

Study design

A cohort of 20 very preterm infants (<30 weeks gestational age, GA) was recruited as part of a

larger prospective study of 57 infants born<42 weeks GA. Infants were prospectively recruited

from the neonatal intensive care unit of King Edward Memorial Hospital, Perth, Australia

over a period of 18 months (July 2015 –December 2016). The inclusion criterion for this study

was informed consent by parent/guardian for an infant being investigated for suspected sepsis

within the first 42 days of life. Relevant demographic (GA, birth weight and postnatal age) and

laboratory (blood culture results, serial C-reactive protein (CRP) measurements and differen-

tial counts) information of recruited infants was collected from patient records and electronic

hospital databases.

Study patients born very preterm (n = 20) were retrospectively classified, based on blood

culture results using a recommended minimum volume of 0.5 mL for infants <28 weeks GA

and plasma CRP immuno-assay measurements (Vitros, Ortho-Clinical Diagnostics), as having

confirmed LOS (positive blood culture and CRP >20mg/L within 72 hours of blood culture),

possible LOS (negative blood culture and CRP >20mg/L within 72 hours of blood culture) or

no LOS (negative blood culture and CRP <20mg/L within 72 hours of blood culture) [19]. All

infants with confirmed LOS received>5 days of antibiotics. Two very preterm infants classi-

fied as having a possible blood culture contamination, i.e. those with positive blood culture

and CRP <20mg/L, were excluded from further analyses, leaving a final cohort of 18 (Fig 1).

Blood sampling and processing

Neonatal peripheral blood was collected either at the time of septic screen (n = 13) or within

fifteen hours, at the next blood draw for clinical purposes (n = 7, median 10 hours), by veni-

puncture into a lithium heparin tube, following decontamination of the skin with 70% ethanol

and 1% chlorhexidine swab. Blood (0.2–0.5 mL) was stabilized in RNase/DNase-free Eppen-

dorf tubes containing pre-aliquoted PAXgene™ reagent (blood:reagent ratio of 1:2.76) accord-

ing to manufacturer’s guidelines (PreAnalytix; Qiagen/Becton Dickson). Sample tubes were

gently inverted ten times and stored at -80˚C until batch RNA extraction. A separate aliquot of

blood (0.5 mL) was centrifuged at 3,000g for 20 min at 4˚C to extract plasma, with collected

plasma samples stored at -80˚C for immunoassays. All blood samples from very preterm

infants were transported on ice to the research laboratory and processed within two hours

from blood collection, with the exception of blood samples from two infants with no LOS,

which were processed within 7 hours.

RNA extraction, quantification and quality assessment

RNA was extracted from stabilised blood using an amended version of the PAXgene™ Blood

RNA System Kit (PreAnalytix; Qiagen/Becton Dickson). Briefly, samples were thawed at room

temperature for up to 2 hours. Samples containing a total blood and PAXgene™ reagent vol-

ume of less than 1880μL had RNase-free water added to a final volume of 1880μL to standard-

ise extraction volumes. All samples were centrifuged and had supernatant removed as per

manufacturer’s instructions. RNase-free water (500μL) was then added to the pellet. All subse-

quent steps were performed according to the manufacturer’s protocol. The RNA concentra-

tion and RNA integrity number (RIN) were measured using the Agilent 2100 Bioanalyzer

(Agilent Technologies). Samples included in bioinformatic and statistical analyses (n = 18) had

total RNA concentrations from 14–262 μg/μL and RIN of 8.3–9.6.
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RNA-Seq

PolyA-enrichment of total RNA was performed using the NEBNext Poly(A) mRNA Magnetic

Isolation Kit (New England Biolabs), followed by cDNA library synthesis using the KAPA

Stranded RNA-seq Library Preparation Kit as per the manufacturer’s instructions (Kapa Bio-

systems). Quantification of the cDNA libraries was performed using a Quant-iT dsDNA Assay

Kit (Invitrogen) and normalized to 4 nM. To derive the transcriptome for each infant, samples

were labelled with a unique barcode, multiplexed, and sequenced on a HiSeq 2500 sequencer

(Illumina), using the High Output 100-bp single-end run, at the University of British Colum-

bia Sequencing Centre.

The deconvoluted sequences from each infant were analysed and the quality of FASTQ

reads were assessed using FastQC(v0.0.15), and summarized using MultiQC(v0.8.dev0) [20,

21]. FASTQ reads were aligned to the GRCh37(hg19) human reference genome [22] using the

STAR(v2.5) aligner, followed by generation of read counts using htseq-count(v0.6.1p1) [23].

Fig 1. Study design. Summary of samples included in bioinformatics and statistical analyses (bolded boxes). Infants were classified as having confirmed late-onset sepsis

(LOS), possible LOS or no LOS based on blood culture and CRP measurement results within 72 hours of blood culture.

https://doi.org/10.1371/journal.pone.0233841.g001
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Globin transcripts and low count genes were bioinformatically removed from the count

matrix. The median library size of uniquely mapped reads for very preterm infant samples was

6.8 million reads, and a range of 4.1–8.9 million reads for the entire study.

Cytokine immunoassays

The concentrations of interferon (IFN)-α, IFN-β, IFN-γ, interleukin (IL)-1α, IL-1β, IL-10 and

IL-6 in plasma were measured using ProcartaPlex™ immunoassay kits (Invitrogen, Thermo

Fisher Scientific) according to the manufacturer’s instructions.

Bioinformatics and statistical analysis

Bioinformatics and statistical analyses were performed on the 18 samples included in the final

study design (Fig 1). Descriptive statistics were conducted in PRISM 7 (GraphPad Software

Inc., California, USA) and included the Mann-Whitney test to determine statistical differences

between clinical groups. All packages used for bioinformatics analyses were performed in R

(v3.3.1) [24]. Differential gene expression analysis was conducted using DESeq2 (v1.12.4),

whereby counts were normalised using variance stabilising transformation then visualised

using principal component analysis [25] with plots generated using ggplot2 (v2.2.1) [26]. Dif-

ferentially expressed genes, based on pair-wise comparison between condition groups, were

identified based on an adjusted p-value of�0.05 and ±1.5 fold-change. Statistically significant

pathways with Bonferroni-corrected hypergeometric test p-value <0.05 were identified from

each differentially expressed gene list using Sigora (v2.0.1) using Reactome database annota-

tions [27] based on over-represented gene-pair signatures. NetworkAnalyst [28] was used for

protein-protein interaction (PPI) based network visualisations of gene expression changes

based on the InnateDB interactome database [29]. NetworkAnalyst was also used to identify

pathway enrichment based on Reactome database pathway and reaction annotations (www.

reactome.org) [27, 28]. Sub-networks were extracted based on significantly enriched pathways

and were grouped into functional categories. BiomaRt(v2.28.0) was used to convert Ensembl

gene identifications to gene symbols [30, 31].

Results

Patient demographics

The demographic information of very preterm infants in this study is shown in Table 1. Over-

all, infants from all clinical groups were similar with no significant differences in GA, birth

weight or postnatal age (p>0.05) (S1 Table). Infants with confirmed LOS were infected with

either Gram-positive (Staphylococcus capitis and/or Staphylococcus epidermidis) or Gram-neg-

ative (Escherichia coli or Enterobacter asburiae) pathogens (Table 1).

Differential gene expression and cell counts between clinical groups

We conducted RNA-Seq to determine possible differences in gene expression between infants

with confirmed LOS, possible LOS and no LOS. To determine the major factors contributing

to overall differences principal component analysis was first conducted on normalised gene

count data (Fig 2). This demonstrated that 4 of the 5 infants with confirmed LOS had similar

overall transcriptional responses that were distinct from responses in infants with possible or

no LOS. Of note, the single infant with confirmed LOS who did not cluster with the other 4

confirmed LOS patients was distinct based on the presence of polymicrobial infection and a

higher postmenstrual age of 237 days at the time of sample collection (Table 1).
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Differential gene expression analysis was subsequently performed to identify genes that

were significantly different between clinical groups using as cut-offs an adjusted P-value of

�0.05 and ±1.5 fold-change. We found that the transcriptional responses of infants with con-

firmed LOS were substantially different from those with no LOS, with 1,317 differentially

expressed genes (995 up-regulated and 322 down-regulated; Fig 2 and S2 Table). In contrast,

the differences in transcriptional responses of infants with confirmed LOS and possible LOS

were markedly lower, with only 21 differentially expressed genes identified (19 up-regulated

and 2 down-regulated; S3 Table). Interestingly, there were no differentially expressed genes

identified when comparing transcriptional responses of very preterm infants with possible

LOS or no LOS. Analysis of differential counts for white cells, platelets, red cells, neutrophils,

lymphocytes, monocytes and eosinophils (S1 Table) showed that there were no significant dif-

ferences (p>0.05) in cell proportions between the clinical groups except for platelet count

between infants with no LOS and confirmed LOS (p = 0.01; S4 Table).

Transcriptional changes during confirmed LOS

Comparing infants with confirmed LOS to those without LOS, a biological pathway over-repre-

sentation analysis was performed using SIGORA on all differentially expressed genes. In con-

trast to traditional pathway enrichment analysis, where pathways are classified as sets of genes

with individual genes being equally informative, gene-pair signature pathway analysis accounts

for only statistically significant gene-pairs that, taken together, are unique to a single pathway.

This reduces the risk of identifying redundant pathways (in which the same genes appear

repeatedly in multiple pathways) and allows more appropriate examination of pathways associ-

ated with disease [27]. Overall, 39 pathways that function in a broad range of host responses,

were significantly (p<0.05) altered in infants with confirmed LOS (Table 2). Of these over-rep-

resented biological pathways, 31 comprised only up-regulated genes, 1 had only down-regulated

genes and 6 included both up- and down-regulated genes. To better understand the relationship

between these pathways and their role during confirmed LOS in very preterm infants, we inves-

tigated these pathways based on their involvement in key processes involved in host responses

to infection, namely: pathogen recognition, cytokine signalling, immune/haematological

Table 1. Demographics of very preterm infants in each analysis cohort with confirmed possible and no Late-Onset Sepsis (LOS); with additional details on con-

firmed LOS infants.

Variable Median (Range)

Confirmed LOS; n = 5 Possible LOS; n = 4 No LOS; n = 9

GA (weeks)� 26.9 (24.3–29.9) 26.4 (24.4–27.0) 26.4 (23.7–29.8)

Birth weight (grams)� 1286 (620–1650) 645 (560–790) 900 (575–1340)

Postnatal age (days)� 11 (6–37) 21 (14–29) 12 (6–25)

Sex (male) 4/5 3/4 4/9

Septic infants

Infant ID Gestation (weeks) Birth weight (g) Sex Postnatal age

(days)

Postmenstrual age (days)† Infecting organism

5 29.9 1650 M 11 220 S. capitis
12 28.6 1340 M 37 237 S. epidermidis & S. capitis
16 24.3 620 F 9 179 E. coli
17 24.6 770 M 14 186 S. aureus
18 26.9 1286 M 6 194 E. asburiae

�Median (Minimum—Maximum).

†Gestation plus postnatal age.

https://doi.org/10.1371/journal.pone.0233841.t001
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regulation, and metabolism. For each of these key processes, expression was investigated and

visualised by plotting the underlying interactions between the protein products of these genes,

by generating zero-order PPI sub-networks using NetworkAnalyst (Fig 3).

Fig 2. Principal component analysis of global gene expression. The graph shows the first two principal components based on overall gene expression between very

preterm infants with confirmed late-onset sepsis (LOS; red triangles), possible LOS (green squares) or no LOS (blue circles). The number of DEGs between infants with

confirmed LOS/no LOS, 1317; confirmed LOS/possible LOS, 21; and possible LOS/no LOS, 0.

https://doi.org/10.1371/journal.pone.0233841.g002
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Table 2. Functional classification of statistically significant over-represented pathways (determined using the Sigora gene-pair signature method) in infants with

Late-Onset Sepsis (LOS).

Pathway description P value† Differentially expressed genes in pathway

Pathogen/Pattern Recognition

Toll Like Receptor TLR6:TLR2 cascade 2.82E-20 Up-regulated

Toll Like Receptor TLR1:TLR2 cascade 5.03E-08 Up-regulated

MyD88-independent TLR3/TLR4 cascade 5.12E-06 Up-regulated

MyD88:Mal cascade initiated on plasma membrane 1.24E-05 Up-regulated

Toll Like Receptor 3 (TLR3) cascade 4.25E-05 Up-regulated

TRIF-mediated TLR3/TLR4 signalling 1.29E-02 Up-regulated

Toll Like Receptor 9 (TLR9) cascade 2.86E-02 Up-regulated

Dectin-2 family 8.20E-04 Up-regulated

Cytokine Signalling

Interferon alpha/beta signalling 5.33E-27 Up-regulated

Interferon signalling 8.20E-19 Up-regulated

Interleukin-6 signalling 2.12E-12 Up-regulated

Interleukin-1 signalling 2.86E-06 Up-regulated

Negative regulators of RIG-I/MDA5 signalling 7.40E-06 Up-regulated

Interferon gamma signalling� 7.48E-05 Up-regulated

Signalling by interleukins� 7.57E-05 Up-regulated

Immune/Haematological Regulation

Alternative complement activation 1.32E-03 Up- and down-regulated

Hemostasis

Platelet degranulation 2.34E-11 Up-regulated

Cell surface interactions at the vascular wall 3.31E-03 Up-regulated

Signal transduction

RHO GTPases activate WASPs and WAVEs 2.05E-03 Up-regulated

Signalling to RAS 5.02E-03 Up-regulated

Hedgehog "on" state 4.74E-03 Down-regulated

Cellular responses to external stimuli

Diseases of immune system 1.68E-08 Up-regulated

Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 1.32E-04 Up-regulated

Programmed cell death

Activation of BAD and translocation to mitochondria 3.22E-03 Up-regulated

Activation of BH3-only proteins 1.74E-02 Up-regulated

Metabolism

Activation of gene expression by SREBF (SREBP) 1.23E-04 Up-regulated

Regulation of cholesterol biosynthesis by SREBP (SREBF) 2.07E-02 Up-regulated

Cholesterol biosynthesis 3.23E-02 Up-regulated

Metabolism of vitamins and cofactors 1.60E-02 Up- and down-regulated

PPARA activates gene expression 2.95E-02 Up- and down-regulated

Metabolism of proteins

O-linked glycosylation of mucins 6.02E-15 Up-regulated

Metabolism of RNA

KSRP (KHSRP) binds and destabilizes mRNA 6.20E-03 Up-regulated

Developmental Biology

Sema4D in semaphorin signalling 8.65E-04 Up- and down-regulated

Constitutive signalling by NOTCH1 HD domain mutants 4.96E-03 Up- and down-regulated

†Statistical significance was based on the hypergeometric test with Bonferroni correction.

https://doi.org/10.1371/journal.pone.0233841.t002
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Pathogen recognition and cytokine signalling

Many transcriptional responses in LOS patients were associated with TLR signalling pathways

(Table 2). The zero-order PPI sub-network of these functionally enriched TLR pathways

showed up-regulation of key interacting genes involved in innate immune signalling including

NFKBIA,MYD88, CEBPB, STAT1, IRF7, IRAK2, IRAK4 and TBK1 (Fig 3A), which are known

to drive the production of pro-inflammatory cytokines and type I IFNs [17, 32]. Genes from

the dendritic cell-associated C-type lectin-2 (Dectin-2) family of CLR were also up-regulated

(Table 2 and S5 Table), although the CLR signalling pathway was not itself functionally

enriched in the zero-order PPI network.

With regards to cytokine responses in LOS patients, it was found that the IFN-α/β, IFN-γ,

IL-1 and IL-6 pathways were over-represented, with 128 up-regulated and 13 down-regulated

nodes in a large cytokine signalling sub-network (Table 2 and Fig 3A). In addition, immune

inhibitory signalling genes for IL-1 receptor antagonist proteins (IL1R2 and IL1RN) and sup-

pressor of cytokine signalling proteins (SOCS1 and SOCS3) were also up-regulated. Interest-

ingly, SOCS1 was part of the unique gene-set associated with all IFN signalling pathways,

whereas SOCS3 was part of the gene-set for the IL-6 signalling and IFN signalling pathways

(S5 Table).

Immune and haematological processes

Transcriptional regulation of immune and haematological processes during confirmed LOS

occurred on multiple levels. Significantly over-represented pathways were identified that were

involved in haemostasis, signal transduction, cellular responses to external stimuli and pro-

grammed cell death (Table 2 and S5 Table). All pathways comprised up-regulated genes,

except for the alternative complement activation (up- and down-regulated genes) and hedge-

hog “on” state (down-regulated genes) pathways. It was also found that the oxygen-dependent

proline HIF1A pathway, commonly associated with hypoxia, was over-represented, with up-

regulation of HIF1A in the immune/haematological PPI sub-network of differentially

expressed genes associated with LOS (Fig 3B). The gene for lactate dehydrogenase A (LDHA),

which is induced by HIF1α, was also up-regulated along with SLC16A3, the gene coding for

monocarboxylate transporter 4 (MCT4) [33].

Interestingly, pathways associated with programmed cell death were also identified with the

over-representation of the Bcl-2 homology (BH3) protein and Bcl-2-associated death (BAD)

pathways (Table 2). Importantly, our immune/haematological PPI sub-network revealed that

despite up-regulation of the majority of genes in the network, BCL2 and IL-7R, two key genes

involved in controlling apoptosis, were significantly down-regulated (Fig 3B).

Changes in metabolic pathways

Significant transcriptional changes during confirmed LOS were identified that were associated

with lipid metabolism and more specifically, activation and regulation of cholesterol biosyn-

thesis (Table 2). The relationship between cholesterol metabolism, type I IFNs and suppression

of IL-1 has previously been elucidated [34, 35], while paediatric sepsis patients also have major

alterations in lipid metabolism [36]. We therefore explored gene expression and interaction

during metabolism by generating an immuno-metabolism sub-network consisting of func-

tionally enriched genes and pathways involved in the regulation of cholesterol biosynthesis,

cytokine signalling and pathogen/pattern recognition (Fig 3A). The sterol regulatory element-

binding proteins (SREBP) pathway, involved in responding to low concentrations of choles-

terol and subsequent promotion of cholesterol biosynthesis [37, 38], was over-represented

along with significant up-regulation of cholesterol biosynthesis genes SREBF2, DHCR7,
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INSIG1, ERLIN2, SQLE, IDI1 and LDLR (Fig 3, Table 2 and S5 Table). Immune-metabolic reg-

ulatory genes, PPARG (encoding the proliferator-activated receptor gamma protein, a nuclear

receptor involved in controlling beta-oxidation of fatty acids and regulation of glucose metab-

olism) [39, 40] and CEBPB (a transcription factor important for regulating immune and

inflammatory response genes) were also up-regulated. Importantly, this metabolism sub-net-

work indicated connections between cholesterol biosynthesis genes (i.e. SREBF2, INSIG1 and

ERLIN2), regulatory genes (i.e. PPARG and CEBPB) and genes involved in the pro-inflamma-

tory response (e.g. IL1B).

Validation of transcriptional responses in infants with confirmed LOS

To validate the transcriptional findings associated with over-represented cytokine signalling

pathways (Table 2), we measured plasma concentrations of IFN-α, IFN-β, IFN-γ, IL-1α, IL-1β
and IL-6 at the protein-level (Fig 4). The concentrations of all IFNs were below detection lim-

its. However, consistent with our findings at the transcriptional-level, infants with confirmed

LOS had significantly higher levels of IL-1α and IL-6 (p<0.05) compared to infants with no

LOS. Infants with confirmed LOS did not have significantly different levels of IL-1β compared

to infants with no LOS (median of 5.19 pg/mL in confirmed LOS versus 0.87 pg/mL in no

LOS; p = 0.14). However, comparison between 4 of the 5 infants with confirmed LOS that had

similar overall transcriptional responses (Fig 2) showed significantly higher levels of IL-1β
compared to all infants with no LOS (median of 9.03 pg/mL in confirmed LOS versus 0.87 pg/

mL in no LOS; p<0.05). Infants with confirmed LOS also had up-regulated expression of

S100A12, which encodes for the S100A12 alarmin previously implicated during neonatal and

adult sepsis [41–43]. In line with our differential gene expression findings, the IL-1α and IL-1β
levels of possible LOS infants were similar to those in infants with no LOS. However, infants

with possible LOS also had significantly higher IL-6 protein concentrations than infants with-

out LOS, consistent with the elevated CRP levels in these infants [44, 45]. Plasma concentra-

tions of IL-10 were significantly higher in infants with confirmed (p<0.005) or possible LOS

(p<0.05) compared to those with no LOS. There were however no significant differences in

IL-10 or IL-6-related gene expression in infants with possible LOS compared to those with no

LOS. Although the IL-10 signalling pathway was not significantly over-represented in our

pathway analysis, infants with confirmed LOS had up-regulated expression of IL10 compared

to no LOS infants.

Discussion

Very preterm infants are at highest risk of acquiring LOS, however, our understanding of their

underlying leukocyte transcriptional responses during sepsis remains limited. Using a com-

bined approach of differential gene expression, pathway over-representation and network

analyses, RNA-Seq was employed to examine the whole blood transcriptional responses of

very preterm infants with confirmed or suspected LOS. Our findings showed that: (i) infants

with confirmed LOS had significantly altered regulation of host immune responses at the tran-

scriptional-level and significantly higher IL-6 and IL-10 plasma concentrations compared to

Fig 3. PPI network visualisations associated with four main functions transcriptionally altered in infants with

confirmed Late-Onset Sepsis (LOS). Zero-order networks were generated in NetworkAnalyst from differentially

expressed genes comparing very preterm infants with confirmed LOS to those with no LOS. The sub-networks shown

were extracted based on pathways identified from the over-representation analysis (Table 2) that were associated with

(A) pathogen/pattern recognition with innate immune signalling nodes highlighted in blue, cytokine signalling and

metabolism, and (B) immune/haematological regulation. The nodes were colour coded based on up-regulation (red)

or down-regulation (black).

https://doi.org/10.1371/journal.pone.0233841.g003
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infants without LOS; (ii) infants with confirmed LOS had changes in immuno-metabolism

that were associated with LOS pathophysiology; and (iii) infants with possible LOS had no dif-

ferentially expressed genes compared to infants without LOS at the transcriptional-level but

had significantly higher IL-6 and IL-10 plasma concentrations at the protein-level.

Transcriptional profiling of blood leukocyte responses revealed that infants with confirmed

LOS, when compared to infants without LOS, had 1,317 differentially expressed genes associ-

ated with 39 over-represented biological pathways that were involved in a broad range of bio-

logical processes from pathogen recognition to metabolism. We found that both immuno-

stimulatory and inhibitory transcriptional responses occurred simultaneously during con-

firmed LOS, indicative of the dynamic pathophysiology of sepsis that is not marked by an ini-

tial hyper-inflammatory response followed by a later immunosuppressive anti-inflammatory

phase [15, 46, 47]. Immune stimulatory responses included up-regulated genes involved in

pro-inflammatory responses including MYD88, STAT1, IRF7, NFKBIA and IL1R1, which are

associated with over-represented cytokine signalling pathways for IFN-α/β, IL-1 and IL-6.

These genes were also found to be increased in expression during neonatal infection in a tran-

scriptional study of preterm and term infants [17]. However, although the IFN-α/β, IL-1 and

IL-6 signalling pathways were over-represented and consisted of only up-regulated genes,

cytokine immunoassays showed that at the protein-level, only IL-1α and IL-6 concentrations

were significantly higher in confirmed LOS compared to no LOS infants. This is consistent

with the concept that the type I interferon signalling pathways invoke other host defence

mechanisms other than just interferons [48].

Fig 4. Cytokine expression of IL-1α, IL-1β, IL-6 and IL-10. Data represent the concentrations of cytokines IL-1α, IL-1β, IL-6 and

IL-10 in infants with confirmed late-onset sepsis (LOS), possible LOS and no LOS. The box plots show the median and interquartile

range and statistically significant differences based on the Mann-Whitney Test (�, p<0.05 and ��, p<0.005).

https://doi.org/10.1371/journal.pone.0233841.g004
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The higher IL-6 plasma concentrations in our study are in line with previous studies of pre-

term infants that showed increased plasma IL-6 concentrations during sepsis compared to

non-infected or control groups [45, 49, 50]. Separately, IL-1 signalling is mediated by both IL-

1α and IL-1β binding to the IL-1R1 receptor. Although IL-1β has been implicated during neo-

natal sepsis, less is known about IL-1α in human neonates [51–54]. The elevated IL-1α levels

in our study were consistent with a recent murine study that also showed increased IL-1α dur-

ing polymicrobial sepsis [51]. The study identified that IL-1α, and not IL-1β, was responsible

for IL-1R1-dependent lethality during neonatal sepsis. In keeping with this, although we found

up-regulation of IL1B in infants with confirmed LOS, this did not translate to significant dif-

ferences in IL-1β plasma concentrations compared to infants with no LOS. Our findings were

consistent with other neonatal studies that found IL-1β concentrations were not different dur-

ing sepsis [55–57]. However, our findings differed from studies that reported significantly ele-

vated IL-1β plasma and serum levels in infected compared to non-infected infants [53, 54, 58],

except when comparing the 4 of 5 infants with confirmed LOS that had similar transcriptional

responses to all infants with no LOS. Overall, the discrepancies between our study and previ-

ous studies [53, 54, 58] could be due to multiple factors including different laboratory methods

used, sample sizes, sample collection times and neonatal populations.

Importantly, we found up-regulation of IL1R2 and IL1RN in infants with confirmed LOS,

with these genes directly connected to IL1B in the cytokine signalling sub-network. These

results were consistent with two independent transcriptional studies showing up-regulation of

IL1R2 and IL1RN during sepsis in preterm/term infants [17] as well as very preterm infants

[16] with a role in immune inhibitory signalling. These genes encode for the IL-1 receptor

type-2 (IL1R2) and IL-1 receptor antagonist proteins (IL1RN), where IL1R2 acts as a decoy

receptor that competitively binds to IL-1α/β and preventing binding to IL1R1, whereas IL1RN

prevents IL-1 from binding to the IL1RAP receptor, inhibiting IL-1 signalling [17, 59]. These

findings suggest that IL-1β plasma concentrations may not have increased during confirmed

LOS in our study due to negative regulation by both IL1R2 and IL1RN.

In parallel with the induction of pro-inflammatory cytokine responses, we also found up-

regulation of anti-inflammatory IL10, whereby plasma IL-10 concentrations were significantly

higher in infants with confirmed LOS compared to infants with no LOS. This was consistent

with previous studies where preterm infants with sepsis had significantly increased IL-10 levels

compared to those who were non-infected [45, 60]. In addition to IL10, we showed up-regula-

tion of SOCS1 and SOCS3, which form part of the IFN signalling pathways. This finding con-

curs with a previous study showing that septic preterm/term infants had up-regulated SOCS1
that functioned in immune inhibitory signalling [17]. SOCS1 and SOCS3 code for the suppres-

sor of cytokine signalling (SOCS) family of proteins that play a critical role in the maintenance

of immune homeostasis [61]. SOCS proteins, which can be induced by cytokines (e.g. IL-10)

and bacterial products (e.g. lipopolysaccharide, LPS), negatively regulate the signalling of cyto-

kines, such as type I IFNs, through direct inhibitory modulation of cytokine receptors via the

JAK-STAT pathway. This in turn has profound regulatory effects on inflammatory responses

and immunity that affects a range of immune cells including T cells, macrophages and neutro-

phils [48, 62–65]. Although the direct mechanisms of the SOCS family of proteins have not

been established for neonatal sepsis, our findings suggest a potential role for SOCS1 and

SOCS3 in dampening interferon responses. In particular, IL-10 may inhibit IFN-γ signalling

and subsequent IFN-γ production via SOCS1, resulting in undetectable IFN-γ protein. The

role of SOCS1 and SOCS3 for immunomodulation during neonatal sepsis warrants further

investigation.

Another marker of sepsis in both neonates and adults that was up-regulated here is

S100A12 (also called calgranulin C), which is an alarmin involved in regulating innate
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immune/inflammatory responses [41, 42]. S100A12 is overexpressed during inflammation

and might serve as a general marker of inflammatory diseases, as well as one of the markers of

sepsis immunosuppression through endotoxin tolerance [43].

Overall, our findings are consistent with an emerging view describing neonatal sepsis

pathophysiology as being characterised by simultaneous hyper- and hypo-inflammatory

immune responses [15] and suggest that impaired immuno-regulation may be a key feature of

LOS in very preterm infants.

The regulation of immune responses and maintenance of immune homeostasis also

depends on tight control of programmed cell death, an essential cellular self-destruction mech-

anism to ensure tissue homeostasis and elimination of damaged and/or infected cells [66]. In

confirmed LOS, we found down-regulation of BCL2 and IL-7R, two key genes important for

controlling apoptosis [67, 68]. In two separate mouse models, the over-expression of BCL2

during sepsis was protective against the death of both lymphoid (thymocytes and splenic T

cells) or myeloid cells (dendritic cells and macrophages), and was important for host immune

responses during sepsis [69, 70]. Accordingly, the significant down-regulation of BCL2 could

potentially contribute to increased cell death of immune cells important for host defences dur-

ing confirmed LOS. Our study did not include examination of the frequencies of the cell popu-

lations in blood, however, based on our transcriptional findings and the presently limited

understanding of BCL2 for sepsis pathophysiology [71], investigation of the effects of BCL2 for

regulation of immune cell death during neonatal sepsis is warranted. We also found down-reg-

ulation of IL-7R, the receptor important for mediating the activity of IL-7, a hematopoietic

growth factor crucial for immune system development and lymphocyte survival [68, 72]. In

experimental models of sepsis, IL-7 was responsible for regulating BCL2 to block lymphocyte

apoptosis, restoring IFN-γ production and improving recruitment of immune cells to the

infection site [73, 74]. Further, lymphocyte depletion has been reported in post-mortem EOS

and LOS studies of preterm and term infants, with results suggesting that severe neonatal sep-

sis could be associated with sepsis-induced immune cell apoptosis [15, 75–77]. Therefore, the

disruption of IL-7/IL-7R signalling during confirmed LOS has potentially detrimental implica-

tions for regulation of immune and cellular homeostasis that contributes to sepsis pathophysi-

ology. The potential of using IL-7 as a lymphostimulating therapy for septic patients has been

described in previous studies [73, 74] and could also be explored in the context of neonatal

sepsis. We found an intersection between host immune responses and metabolism at the tran-

scriptional level in infants with LOS. Infants with confirmed LOS had multiple changes in

gene expression and pathways associated with cholesterol metabolism and biosynthesis. Sev-

eral genes identified as up-regulated (SQLE, IDI1, DHCR7 and LDLR) in infants with con-

firmed LOS were consistent with a study of preterm and term infants that also found

transcriptional changes to these genes involved in cholesterol biosynthesis and homeostasis

during neonatal sepsis [17]. Specifically, DHCR7, IDI1 and LDLR were also found to be up-reg-

ulated during bacterial sepsis in VLBW infants [16]. The cross-regulation between metabolism

and the immune system is increasingly recognised as important for host responses during

infection [13, 17, 78].

Numerous studies in both humans and mouse models have explored the role of cholesterol,

both high-density lipoproteins (HDL) and low-density lipoproteins, in relation to sepsis [79–

86]. Adult patients with severe sepsis typically have lower cholesterol levels, and high choles-

terol levels are suggested to be important for protection during sepsis, whereby lipoproteins

play a crucial role in regulating immune responses to infection such as controlling pro-inflam-

matory cytokine release, exerting anti-inflammatory effects by neutralising LPS and facilitating

clearance of bacterial toxin [79, 84, 87]. Our study did not measure total cholesterol, HDL or

low-density lipoproteins levels, however, LOS has been linked to lower total cholesterol and
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HDL levels in preterm and term infants, with impaired LPS neutralisation and effects of cyto-

kines suggested to contribute to reduced HDL levels [86, 88].

The metabolism sub-network identified demonstrated connections between metabolic

(SREBF2, INSIG1 and ERLIN2), regulatory (PPARG and CEBPB) and inflammatory (IL1B)

genes, which were all up-regulated, suggesting potential inflammasome activation by sterols

during confirmed LOS in our study [38]. Acute infections and sepsis have been linked to

diminished ability of HDL to mediate cholesterol efflux from macrophages to plasma [38, 89],

which could explain lower total plasma cholesterol and HDL levels during LOS reported in a

preterm and term infant study [86]. Specifically, this leads to cholesterol accumulation in mac-

rophages, which promotes inflammasome activation that leads to IL-1β production, and that

drive inflammatory responses during microbial infection [34, 35, 38]. Although altered choles-

terol homeostasis could contribute to pro-inflammatory responses, we did not find signifi-

cantly increased plasma IL-1β concentrations in infants with confirmed LOS compared to

infants with no LOS at the protein-level. In accordance with a study of neonatal monocytes,

this could be due to low expression of NLRP3 in very preterm infants, where NLRP3 has a cen-

tral role in regulating inflammasome activation and subsequent IL-1β secretion [38, 90].

We also found over-representation of the oxygen-dependent proline HIF1A pathway and

up-regulation of HIF1A (transcription factor HIF1α)[91]. Our findings were consistent with

studies showing significant overexpression of HIF1A during EOS in preterm infants (<32

weeks gestation) [92] and during bacterial sepsis in very preterm infants [16]. The induction of

HIF1α in response to sepsis-associated cytopathic hypoxia has also been shown in previous

human adult and mouse sepsis studies [33, 93–96]. Importantly, HIF1α plays a crucial role in

the metabolic switch from oxidative phosphorylation to glycolysis to meet increased energy

demands for inflammatory responses during sepsis [33, 91, 97]. Further, HIF1α induces genes

for proteins associated with glycolytic processes including lactate dehydrogenase (LDHA) and

MCT4 (SLC16A3) [33, 91], where both genes were up-regulated in infants with confirmed

LOS. Therefore, consistent with previous sepsis studies [16, 33, 91, 97, 98], our findings suggest

that LOS is also associated with a shift towards glycolysis to meet the increased energy require-

ments for host immune responses in very preterm infants.

Finally, we found that host immune responses of infants with possible LOS could not be

clearly distinguished from those with either confirmed LOS or no LOS–there were no differen-

tially expressed genes between infants with possible LOS or no LOS, and only 21 differentially

expressed genes when compared to infants with confirmed LOS. The small sample size of

infants with possible LOS could potentially contribute to the lack of differentially expressed

genes identified in comparison to infants with confirmed and no LOS. However, at the pro-

tein-level, infants with possible LOS did have significantly higher plasma levels of IL-6 and IL-

10 compared to infants with no LOS, and similar levels to infants with confirmed LOS. Infants

with possible LOS were identified by their elevated CRP levels in the absence of positive blood

cultures. The production of plasma CRP by hepatocytes is controlled in part by IL-6 [44] and

consistent with a study of preterm infants with suspected sepsis, our findings are consistent

with those showing a positive relationship between CRP and IL-6 plasma levels [45]. We iden-

tified several genes associated with IL-6 (e.g. NFKBIA,MYD88, IRAK3 and IRKA4) and IL-10

(e.g. IL10RA and IL10) production, although these were not significantly different in infants

with possible LOS compared to those with no LOS which could be due to the differential

expression criteria used and the small sample size of infants with possible LOS. The septic state

of infants with possible LOS among a population of infants with suspected LOS remains chal-

lenging due to ambiguous host responses and examination of additional systems-level

responses, such as at the metabolic levels, could allow us to better comprehend the underlying

functional biology associated with possible LOS [99–101].
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Limitations

The limitations of our study included small sample sizes with no formal power calculations

and no inclusion of the severity of illness score to describe preterm infants with LOS within

this analysis [102], however, we have begun collecting this information and will report it in

future studies. Our study demonstrates the ability to use RNA from small blood volumes (less

than 0.5 mL) for transcriptional profiling at the systems-level using an unbiased RNA-Seq

approach. The capacity to stabilise nucleic acids at the time of sample collection from low vol-

umes of blood is also clinically relevant due to the difficulties associated with obtaining large

blood volumes from neonates, especially those born preterm [16].

Conclusion

We found that confirmed LOS is characterised by host immune transcriptional responses that

reflect unbalanced immunometabolic homeostasis. The findings of this study represent a start-

ing point for systems-level investigations of neonatal sepsis in very preterm infants and war-

rant validation in a statistically powered study. Investigation of LOS pathophysiology at the

systems-level could lead to identification of novel gene signatures and gene products that

could improve diagnosis of neonatal sepsis.
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