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Abstract

Cystic fibrosis (CF) is a genetic disease that affects mucin-producing body organs such as

the lungs. Characteristic of CF is the production of thick, viscous mucus, containing the gly-

coprotein mucin, that can lead to progressive airway obstruction. Recently, we demon-

strated that the presence of mucin induced a rapid surface adaptation in motile bacteria

termed surfing motility, which data presented here indicates is very different from swarming

motility. Pseudomonas aeruginosa, the main colonizing pathogen in CF, employs several

stress coping mechanisms to survive the highly viscous environment of the CF lung. We

used motility-based assays and RNA-Seq to study the stringent stress response in the

hypervirulent CF isolate LESB58 (Liverpool Epidemic Strain). Motility experiments revealed

that an LESB58 stringent response mutant (ΔrelAΔspoT) was unable to surf. Transcriptional

profiling of ΔrelAΔspoT mutant cells from surfing agar plates, when compared to wild-type

cells from the surfing edge, revealed 2,584 dysregulated genes. Gene Ontology and KEGG

enrichment analysis revealed effects of the stringent response on amino acid, nucleic acid

and fatty acid metabolism, TCA cycle and glycolysis, type VI secretion, as well as chemo-

taxis, cell communication, iron transport, nitrogen metabolic processes and cyclic-di-GMP

signalling. Screening of the ordered PA14 transposon library revealed 224 mutants unable

to surf and very limited overlap with genes required for swarming. Mutants affecting surfing

included two downstream effector genes of the stringent stress response, the copper regula-

tor cueR and the quinolone synthase pqsH. Both the cueR and pqsH cloned genes comple-

mented the surfing deficiency of ΔrelAΔspoT. Our study revealed insights into stringent

stress dependency in LESB58 and showed that surfing motility is stringently-controlled via

the expression of cueR and pqsH. Downstream factors of the stringent stress response are

important to investigate in order to fully understand its ability to colonize and persist in the

CF lung.
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Author summary

Cystic fibrosis (CF) is a progressive disease associated with excessive mucus build up in

the lungs, blocking airways and facilitating bacterial persistence. CF affects >30,000 peo-

ple in the US and currently there exists no cure. Bacterial infections such as the ones that

involve Pseudomonas aeruginosa worsen treatment strategies because of the pathogens’

ability to evade not only the immune system but also antibiotic killing. In the CF lung, P.

aeruginosa has been proposed to employ rapid surface motility adaptations in the form of

swarming and the more recently identified surfing motility. Here, we demonstrate that

surfing is indeed a novel form of motility that can be distinguished from swarming, and

further demonstrate that surfing is dependent on the stringent stress response in an

aggressive P. aeruginosa CF isolate. We discovered two novel downstream factors of the

stringent response, a copper regulator and a quinolone synthase, that contribute to medi-

ating surfing motility. Investigating adaptive behaviors such as surface motility is impor-

tant to understand how these contribute to host-pathogen interactions.

Introduction

Pseudomonas aeruginosa is a ubiquitous Gram-negative pathogen that causes opportunistic

and difficult-to-treat infections. It is strongly associated with chronic debilitating lung infec-

tions in individuals with cystic fibrosis (CF) [1]. A hallmark of pathogenic P. aeruginosa is

their evolutionary adaption to challenging host conditions such as those found in the CF lung

[2]. A particularly aggressive CF isolate is the transmissible Liverpool Epidemic Strain (LES),

originally isolated from the sputum of a CF patient [3]. LES isolates are associated with

enhanced virulence and greater patient morbidity [4], predominance in intra-species competi-

tion [5], stronger persistence in the bronchial lumen [6], increased biofilm formation,

decreased motility, and elevated levels of antibiotic resistance [2].

P. aeruginosa possesses several virulence factors that facilitate invasion of the host, compro-

mise immune defences, and ensure its survival and colonization in the host environment. To

establish an infection, it has been proposed that Pseudomonas type IV pili are involved in bind-

ing to the apical epithelial surface, while flagellar-mediated motility is proposed to be impor-

tant for the colonization of the basolateral surface of airway epithelium [7]. The type of

motility can vary substantially depending on the viscosity and composition of the environment

[8]. Recently, Abdullah et al. [9] showed that the reduced water content of the CF airways can

trigger the misfolding of the MUC5B mucin protein that further contributes to the thick, vis-

cous gel-like properties of the mucus in the CF lung. At the viscosity encountered in the

mucous layer of the CF lung, Pseudomonas likely adopts complex surface growth and motility

behaviours, such as swarming and biofilm formation using flagella and type-IV pili [10] or fla-

gella-mediated surfing in the presence of the glycoprotein mucin [11].

P. aeruginosa employs a variety of adaptation mechanisms to cope with environmental

stresses [12]. The stringent stress response signaling pathway, mediated by the second messen-

ger molecule guanosine (penta)tetraphosphate (p)ppGpp, is an evolutionarily conserved

response that is activated in various cellular stress conditions that restrict bacterial growth (e.g.

nutrient or iron limitation). In P. aeruginosa, (p)ppGpp is synthesized through the two

enzymes RelA and SpoT. Both enzymes can transfer pyrophosphate from ATP onto GTP to

form guanosine pentaphosphate, which is rapidly converted to ppGpp. The accumulation

of ppGpp remodels the RNA polymerase that leads to a switch from energetically-costly pro-

cesses to energy-saving and stress coping mechanisms [13]. The stringent stress response has
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been previously studied in various Pseudomonas human and plant isolates and shown to be

associated with twitching and swarming motility, biofilm formation, hemolytic capacity and

abscess formation as well as growth in a murine skin infection model [6, 14–18].

The CF lung is considered a stressful environment due to increased oxidative stress levels

[19], chronic activation of the innate immune system [20], and bacterial competition upon

antibiotic exposure [12]. Therefore, here we aimed to characterize the role of the stringent

stress response in relation to motility of the hypervirulent CF epidemic isolate LESB58. We

present evidence that the stringent stress response is required for P. aeruginosa to adapt to

environmentally challenging conditions. This stress response was shown to link the complex

adaptive motile behaviour, surfing, with the strong involvement of the stringently-controlled

copper regulator cueR and quinolone synthase pqsH.

Results

The P. aeruginosa LESB58 stringent response mutant was impaired in

surfing

We confirmed literature reports [14, 15, 21] showing that the stringent response was required

for swarming, adherence and biofilm formation, as well as pyoverdine and pyocyanin produc-

tion, in the clinical isolate P. aeruginosa LESB58 (S1 Text, S1 Fig). Vogt et al. [14] demonstrated

that ppGpp was not required for swimming in P. aeruginosa PAO1, as indeed we confirmed (S2

Fig), and despite the rather poor swimming motility of strain LESB58, ppGpp did not appear to

be required for the weak swimming motility observed for this strain either (S1 Text, S2 Fig). To

determine the role of the stringent stress response in other adaptive behaviours, we further

investigated surfing motility. Surfing is a conserved form of surface motility that occurs when

mucin, a high molecular weight glycoprotein present in mucus, is added to the medium [22]. It

exhibits clear differences from swarming surface motility in that it is dependent on flagella but

not pili or rhamnolipids (required for P. aeruginosa swarming), and can occur at a wide range

of substrate viscosities under both nutrient-limiting or rich conditions (restricted in the case of

swarming), and with certain other lubricating agents in place of mucin [11, 22, 23]. At the

molecular level, surfing cells exhibit differential expression of more than a thousand genes,

including many regulators, when compared to swimming, swarming and sessile cells [23].

Intriguingly, LESB58 showed excellent surfing capability (Fig 1). In contrast, a double dele-

tion mutant of relA and spoT in the LESB58 background, ΔrelAΔspoT, was defective in surfing.

Fig 1. Surfing motility in P. aeruginosa LESB58 and ΔrelA/ΔspoT. Surfing on KB 0.3% agar plates with 0.4% mucin of the LESB58 wild-type, ΔrelAΔspoT stringent

response mutant, and relA and spot complemented strains. The strains were grown for 24 h at 37˚C. Experiments were repeated 3–5 times with similar results.

https://doi.org/10.1371/journal.ppat.1008444.g001
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This could be partially complemented with either the spoT or relA cloned genes, although the

spoT complement was much more highly pigmented (Fig 1). There was no basic defect in fla-

gella production due to any of these mutations, since we observed similar swimming zone

sizes after 24 h for WT and all mutants in both the strains LESB58 and PAO1 (although the

swimming colony morphology for strain LESB58 was somewhat unusual). Furthermore, all

mutants appeared to show similar swimming ability when viewed in aqueous suspension using

a light microscope. Nevertheless, to investigate if the loss of surfing involved flagella loss, we

examined cell morphology of mutant cells on surfing agar plates and compared them to wild-

type cells using transmission electron microscopy (TEM). The LESB58 wild-type showed two

distinct morphologies with electron-dense thin rods and less dense enlarged cells at the edge

and center, while the stringent response mutant only exhibited enlarged cells that were both

longer and wider than wild-type cells (S3 Fig). Flagella could only be observed on cells at the

centre of surfing plates, but not at the edge for WT, as previously described [11]. We were

unable to detect flagella in the spots formed by the ΔrelAΔspoT double mutant (S4 Fig),

although the large amount of extracellular material under these circumstances made observa-

tions difficult.

Since surface motility adaptations (i.e., swim, swarm, surf) utilize flagella for colony propa-

gation, we examined the expression of some genes involved in flagella synthesis, chemotaxis,

and quorum-sensing using qRT-PCR (Table 1). RNA was isolated from P. aeruginosa LESB58

stringent response mutant cells and compared to wild-type cells from the motility edge. Under

swarming conditions, downregulation in the ΔrelAΔspoT stringent response mutant was

observed for the chemotaxis gene cheY by 3.8-fold, the two-component response regulator of

flagella synthesis fleR by 3.5-fold, and the rhamnosyltransferase rhlB (which is involved in the

synthesis of rhamnolipid, a surfactant required for swarming) by 5.8-fold. We also observed

downregulation of the quorum-sensing regulators lasR and rhlR by 4.3- and 3.5-fold respec-

tively. In contrast under surfing conditions, most of these genes were relatively upregulated or

unaltered in expression in the double mutant (Table 1).

The LESB58 stringent stress response regulated surfing motility

To further understand the surfing deficiency of the stringent response mutant, the transcrip-

tional profile of the LESB58 ΔrelAΔspoT (non-surfing) mutant cells from surfing agar plates

was compared to wild-type cells isolated from the edge of the surfing colony. This revealed the

Table 1. Alterations in LESB58 ΔrelA/ΔspoT mRNA transcripts under surfing, swarming, and swimming conditions. The stringent response double mutant was com-

pared to the edges of wild-type motility zones. All experiments were performed on KB agar plates.

Gene Product Description Fold change in ΔrelA/ΔspoT
compared to WT

Surfing Swarming Swimming

fleQ Transcriptional regulator FleQ, a c-di-GMP responsive regulator that influences flagella synthesis 1.7 -1.0 1.1

fleR Transcriptional response regulator FleR that controls flagella synthesis 1.1 -3.5 -1.4

cheY Two-component response regulator CheY that modulates chemotaxis 1.7 -3.8 -1.5

rhlB Rhamnosyltransferase chain B involved in the production of rhamnolipid surfactant required for swarming 3.2 -5.8 -2.1

lasR Transcriptional regulator LasR for the quorum sensing system based on N-3-oxo-dodecanoyl-L-homoserine lactone 2.1 -4.3 1.8

rhlR Transcriptional regulator RhlR for the quorum sensing system based on N-butanoyl-L-homoserine lactone 2.2 -3.5 -2.2

pqsH FAD-dependent monooxygenase involved in synthesis of the quorum sensing effector Pseudomonas Quinolone Signal

(PQS)

-2.8 -2.4 -1.1

pqsR /
mvfR

Transcriptional regulator MvfR modulates quorum sensing 1.7 1.3 -1.0

cueR Cu(I)-responsive transcriptional regulator CueR -4.4 -1.9 -3.1

https://doi.org/10.1371/journal.ppat.1008444.t001
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massive dysregulation of 2,584 genes (±1.5-fold change, adjusted p-value<0.05), 43.6% of the

genome, comprising 1,261 upregulated and 1,323 downregulated genes. KEGG pathway (Fig

2A) analysis and Gene Ontology (GO) enrichment (Fig 2B and 2C), revealed that downregu-

lated ΔrelAΔspoT mutant genes were involved in amino acid, nucleic acid and fatty acid

metabolism, TCA cycle and glycolysis, as well as type VI secretion. On the other hand, chemo-

taxis, cell communication, iron transport, and nitrogen metabolism were upregulated. A closer

look at individual genes required for quorum sensing (QS) revealed that most genes in this

pathway were downregulated (S5 Fig). Intriguingly, a significant upregulation of many genes

involved in flagella biosynthesis and chemotaxis was evident (S6 Fig), which was not consistent

with the explanation that a loss of flagella gene expression was responsible for the phenotype

of the stringent response double mutant. Consistent with decreased adherence (S1C and S3B

Figs), downregulation of many pilus genes, including a 11.4-fold decrease in the structural

pilA gene, was observed (S7 Fig).

Furthermore, the expression of genes encoding 21 of the 38 cyclic-di-GMP modulating

enzymes identified in P. aeruginosa were regulated by ppGpp as determined by their up (18

genes) or down (3 genes) regulation in the ΔrelAΔspoT stringent response mutant. These

genes included PA0285, PA0290, PA0575, PA0847, rbdA, roeA, PA1181, PA1851, PA2072,

PA2771, PA2870, PA3258, nbdA, PA3825, rocR, bifA, PA4396, gcbA, PA4959, dipA, and

PA5442. Other related genes included the HD-Gyp PA2572, the PilZ regulators PA0012,

PA2799, PA2989 and PA4608, and the MshEN PA3740 (all upregulated) (S8 Fig).

Fig 2. KEGG analysis and GO enrichment of differentially expressed genes comparing the P. aeruginosa LESB58 stringent stress response

mutant ΔrelA/ΔspoT to the wild-type strain under surfing conditions. The gene ratio on the x-axis represents the proportion of genes in the

particular pathway/functions category that were dysregulated. A) KEGG enrichment of differential gene expression performed by GAGE analysis

with a threshold of q-value� 0.1. B, C) Results of selected GO term enrichment for Biological processes performed by GOfuncR on the list of

differentially expressed genes with downregulated (B) and upregulated (C) GO terms. GO terms were considered significant with q-value� 0.1.

A-C) Dot size indicates total number of genes annotated to a particular term / pathway.

https://doi.org/10.1371/journal.ppat.1008444.g002
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Identification of genes required for surfing motility and stringent

dependency

To further characterize the genes that might underlie the effects of the stringent response double

mutant, a group of genes that were required for surfing motility was determined by screening

the ordered PA14 transposon library [24] under surfing conditions. This screen revealed 224

transposon mutants, including 25 regulatory mutants, that were either defective in surfing or

had a non-surfing phenotype (S1 Table). Intriguingly there was very little overlap with mutants

identified from an analogous screen performed to identify mutants involved in swarming [25].

To identify downstream mediators of the stringent stress response involved in surfing in

LESB58, we focused on regulatory genes in the ppGpp-deficient ΔrelAΔspoT mutant. To

extend this analysis, qRT-PCR was utilized to examine gene expression of 11 of the regulators

for which mutants had a surfing defect (Table 2). Dysregulation of 9 of these by more than

2-fold was demonstrated and of these, four were demonstrated to be downregulated, including

the copper-transport regulator cueR, a positive regulator of copper metabolism [26], that was

strongly down regulated by 4.4-fold (Table 2).

Interestingly, we observed upregulation in the stringent response double mutant of the two

quorum sensing regulators rhlR and pqsR, which when mutated lead to surfing deficiency [22,

23] (S1 Table) and also mediate stress responses [12, 27]. Since both are involved in the regula-

tion of Pseudomonas quinolone signal (PQS) synthesis during stress [27], downstream PQS

genes were further investigated and it was shown that the pqsABCDE operon, pqsH and phnAB
were all downregulated (by -1.6 to -3.5-fold) in the mutant (S5 Fig). The gene expressing FAD-

dependent monooxygenase pqsH, involved in the last step of PQS synthesis, was confirmed by

qRT-PCR to be 2.8-fold downregulated in the ΔrelAΔspoT mutant.

To determine the involvement of cueR and pqsH in stringent regulation of surfing motility

in strain LESB58, the ΔrelAΔspoT mutant was complemented with each cloned gene. Intrigu-

ingly, overexpression of both cueR and pqsH separately restored surfing motility in the surf-

ing-deficient ΔrelAΔspoT mutant (Fig 3).

Discussion

Microorganisms move on moist surfaces to enable them to survey new nearby ecological habi-

tats and favourable environmental conditions or to avoid deleterious situations [28]. In

Table 2. Relative fold-changes of LESB58 ΔrelA/ΔspoT mRNA expression compared to wild-type levels of expression. 11 regulators were investigated for which PA14

transposon mutant variants exhibited surfing deficiency (no motility or a different form of surfing). The stringent response double mutant was compared to the edges of

wild-type motility zones. All experiments were performed on KB agar plates.

PAO1

Locus Tag

Gene Product Description qRT-PCR

PA0034 Two-component response regulator -2.1

PA0520 nirQ Denitrification regulatory protein nirQ 7.6

PA1003 pqsR Transcriptional regulator MvfR / PqsR 2.0

PA1097 fleQ Transcriptional regulator FleQ 2.2

PA1099 fleR Transcriptional regulator/response regulator FleR 1.3

PA3477 rhlR Transcriptional regulator RhlR 2.3

PA3599 Transcriptional regulator 1.8

PA3921 Transcriptional regulator -2.1

PA4398 Two-component sensor -2.0

PA4726 cbrB Two-component response regulator CbrB 3.2

PA4778 cueR Cu(I)-responsive transcriptional regulator CueR -4.4

https://doi.org/10.1371/journal.ppat.1008444.t002
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response to specific chemical and physical cues sensed in the environment, microbes can

adapt through physiological and morphological differentiation. The stringent stress response

is a powerful set of mechanisms that enable bacteria to rapidly adjust to unfavourable environ-

mental conditions and stressful circumstances. Here we demonstrated that the loss of the strin-

gent response in the epidemic P. aeruginosa CF isolate LESB58 inhibited a mucin-induced

rapid form of surface motility known as surfing. We investigated in more detail the role

of ppGpp in surfing motility; a recently identified novel form of motility that requires the pres-

ence of mucin that abounds in the lungs of CF patients, contributes to broad-spectrum antibi-

otic resistance, and has been shown to be conserved in several bacterial species [11, 22].

To investigate the mechanisms underlying surfing impairment in the ΔrelAΔspoT stringent

response mutant, the transcriptional profile of this non-surfing mutant was compared to that

of wild-type cells isolated from the edge of a surfing colony. Intriguingly, flagella are required

for surfing [11] and most flagellar biosynthesis and chemotaxis genes were upregulated in the

non-surfing ΔrelAΔspoT mutant. This upregulation could be partially due to protein degrada-

tion and/or lack of surface flagella. To further identify a mechanism that might explain surfing

deficiency, we screened the comprehensive ordered P. aeruginosa strain PA14 transposon

mutant library, which revealed 224 surfing-deficient mutants. Interestingly, of the 233 mutants

affecting swarming motility that were revealed in an analogous screen of the same library [25]

there were only 28 mutants that overlapped between the two screens (PA066, rhlE, PA0475,

epd, aphB, gacS, fliL, hcnC, gacA, pqsH (S9 Fig), PA2685, minD, rhlR, tli5, PA3628, PA3631,

PA3749, PA4137, PA4144, PA4168, PA4398, PA4616, cbrAB, cueR (S9 Fig), pstC, cbcV, and

rmd). This together with the limited overlap in genes with altered expression between swarm-

ing [8] and surfing edge [23] cells, indicates that these two surface motility adaptations,

swarming and surfing, are very different.

Further investigation of the expression, in the LESB58 ΔrelAΔspoT stringent response

mutant, of regulatory genes required for surfing revealed that the copper-responsive transcrip-

tional regulator cueR was strongly downregulated. Copper is an essential trace element inside

bacterial cells, acting as a reactive center for many enzymatic reactions that are important for

numerous vital biological processes including respiration, iron uptake and transport, and

superoxide detoxification; however too much copper is toxic [29]. In P. aeruginosa, CueR has

been shown to directly bind to and activate five promoters controlling the expression of 11

genes, namely PA3515 to PA3519, PA3520, efflux operon mexPQ-opmE, non-coding RNA

Fig 3. Surfing motility in P. aeruginosa LESB58, ΔrelA/ΔspoT, and effects of overexpression of pqsH or cueR in the ΔrelA/ΔspoT mutant. Surfing on KB 0.3% agar

plates with 0.4% mucin and the strains were grown for 24 h at 37˚C. Experiments were repeated 3–5 times with similar results.

https://doi.org/10.1371/journal.ppat.1008444.g003
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PA3574.1, and a copper homeostasis P-type ATPase cueA (PA3920), the last of which was

shown to be a virulence factor in a murine model and involved in dissemination to the liver

[30]. Of these, PA3518, PA3519 and PA3520 were all upregulated during surfing [23]. Criti-

cally we showed here that when cueR was overexpressed in a ΔrelAΔspoT ppGpp-deficient

strain, it restored surfing motility. The copper-responsive regulator cueR is therefore a new

downstream effector of the stringent stress response required for surfing, as well as swarming

motility [25].

Transcriptomic analysis also revealed a dysregulation of cell communication, which

prompted us to look further into quorum-sensing (QS) signalling pathways. Our previous

studies revealed the dependence of surfing motility on all three major QS pathways in P. aeru-
ginosa [11, 22]. This was also confirmed by our mutant screen since we identified suppressed

surfing motility in mutants in lasI, rhlR, rhlI, pqsA-E, pqsR, pqsH, phzA1, and hcnC. Interest-

ingly, the expression of the transcriptional regulator pqsR and the acyl-homoserine-lactone

responsive regulator rhlR was 2-fold upregulated in the ΔrelAΔspoT mutant, but other QS-

depended genes, including the pqsABCDE operon that includes the quinolone signal response

protein gene pqsE, pqsH, phnAB, as well as QS-regulated virulence factors lasAB, aprI, aprA/
DEFX, phzA1/A2/H/M/S, hcnABC, and ambA/CDE were all downregulated in the stringent

response mutant, by around 2.5-22-fold.

The Pseudomonas quinolone signal (PQS, 2-heptyl-3-hydroxy-4-quinolone) pathway

depends on PqsR [31], which regulates the expression of the pqsA-E operon once activated by

2-heptyl-4-quinolone (HHQ). Further expression of pqsE upregulates virulence factors (e.g.,

phz, hcn) [31], which is in accordance with our study where we observed a downregulation of

all those genes. PQS and pqsE have both been suggested to be required for Lectin A production

in P. aeruginosa [32], however under surfing conditions lectin production appears to depend

exclusively on the rhl QS system [12] as we found a 7-fold upregulation of lecA in the ΔrelAΔ-
spoT. Together with the upregulation of the rhl system we found that two out of three AHL-

acylases, hacB and pvdQ, both hydrolyse long-chain AHLs to prevent excessive signal build-up

[33], were downregulated in the stringent response mutant by 1.7- and 3-fold, respectively.

Schafhauser et al. [34] and Nguyen et al. [35] reported that the stringent response negatively

regulates 4-hydroxy-2-alkylquinolines (HAQs) by reducing the expression of the rhl system,

which leads to increased expression of the HAQ biosynthetic gene pqsA, the monooxygenase

pqsH, and the positive regulator pqsR. Here, we observed an opposite regulation under surfing

conditions, where the rhl system was upregulated and HAQ-associated genes were

downregulated.

We further focused more closely on the effector functions (signalling molecules) and inves-

tigated the quinolone synthase pqsH gene that encodes the enzyme involved in the last step of

synthesis to produce PQS from HHQ. Overexpression of this gene complemented the surfing

deficiency of the ΔrelAΔspoT stringent stress response mutant. Our previous studies [22] dem-

onstrated that a mutation in the pqs operon was surfing deficient and this could be comple-

mented by adding exogenous PQS signalling molecule. This then indicates that the loss of

signalling through PQS is one reason why the ppGpp-deficient double mutant ΔrelAΔspoT is

surfing deficient. Thus, our data supports the conclusion that quorum sensing is stringently-

controlled to influence surfing motility in LESB58.

Another intriguing feature of the data provided here is the apparent importance of cyclic

di-GMP in regulating surfing. We identified four enzymes mediating the regulation of this

messenger as being required for surfing motility including the diguanylate cyclases TpbB and

SadC and phosphodiesterase FimX and DipA as well as one cyclic-di-GMP binding regulator

FleQ (S1 Table). These genes separately regulate other complex adaptive processes including

virulence, biofilm formation/dispersion and persistence, a form of adaptive resistance to
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antimicrobials, thus, contributing to a relatively large regulon [36–38]. Accordingly, several

genes involved in the cyclic di-GMP pathway were found to be dysregulated in the stringent

response mutant, including dipA which was shown to be essential in mediating surfing motil-

ity. Thus, the stringent response and surfing motility in general have a very substantial influ-

ence on second messenger activity in Pseudomonas.
In summary, we demonstrated that the ΔrelAΔspoT stringent stress response mutant of the

P. aeruginosa clinical CF isolate LESB58 had pronounced deficiencies in adapting to environ-

mental stress conditions, suggesting a potential role of the stringent stress response during

pathogenesis. We identified two novel downstream effector genes, cueR and pqsH, both

involved in stringent response regulation of surfing motility, and believe it is important to fur-

ther identify other downstream factors of the stringent stress response, to fully understand its

ability to colonize and persist in the CF lung.

Materials and methods

Bacterial strains, media, and growth conditions

Bacterial strains used in this study are listed in Table 3 and primers in S2 Table. Pseudomonas
strains were cultured at 37˚C in LB (Difco), 2xYT (Sigma), King’s B medium (KB), or synthetic

cystic fibrosis medium (SCFM) [39]. Bacterial growth was monitored at an optical density at

600 nm (OD600) using either a spectrophotometer or a 96-well microtiter plate reader (Synergy

H1; BioTek). Cultures harboring individual plasmids were maintained by supplementation

with 15 μg/ml gentamicin (Gm) for E. coli or 500 μg/ml Gm for P. aeruginosa LESB58.

Swarming motility assay

Swarming motility of P. aeruginosa strain LESB58 was examined as previously described [40],

with slight modifications. Strains were scraped from overnight grown plates and suspended in

sterile demineralized water to an OD600 of 0.1. Ten μl of a bacterial cell suspension was applied

onto KB plates containing 0.35% agar. Plates were then incubated at 37˚C for 48 h. Experi-

ments were repeated at least three times with three replicates for each strain.

Swimming and surfing motility assay

Swimming motility of P. aeruginosa LESB58 strains was examined on KB and SCFM plates

containing 0.3% agar, while surfing motility was investigated on the same plates supplemented

with 0.4% mucin from porcine stomach (Type II; Sigma-Aldrich). Briefly, P. aeruginosa strains

Table 3. Pseudomonas aeruginosa strains used in this study.

Strain Relevant characteristics Reference

LESB58 Liverpool Epidemic Strain isolate [3]

LESB58 ΔrelAΔspoT Double deletion mutant of relA and spoT [18]

LESB58 ΔrelAΔspoT/relA+ Double deletion mutant of relA and spoT chromosomally complemented

with the native relA gene including its promoter region; gentamicinr
[18]

LESB58 ΔrelAΔspoT/

spoT+
Double deletion mutant of relA and spoT chromosomally complemented

with the native spoT gene including the rpoZ and the rpoZ-spoT promoter

region; gentamicinr

[18]

LESB58 ΔrelAΔspoT
(pBBR5.cueR+)

Double deletion mutant of relA and spoT transformed with pBBR1MCS-5

containing the cueR gene including its promoter region; gentamicinr
This

study

LESB58 ΔrelAΔspoT
(pBBR5. pqsH+)

Double deletion mutant of relA and spoT transformed with pBBR1MCS-5

containing the pqsH gene including its promoter region; gentamicinr
This

study

PA14 MAR2xT7 PA14 transposon mutant library; gentamicinr [24]

https://doi.org/10.1371/journal.ppat.1008444.t003

PLOS PATHOGENS Surfing motility is stringently controlled in Pseudomonas aeruginosa

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008444 March 24, 2020 9 / 17

https://doi.org/10.1371/journal.ppat.1008444.t003
https://doi.org/10.1371/journal.ppat.1008444


were grown to mid-log phase (OD600 = 0.5), and subsequently spotted (1 μl) onto the respec-

tive agar plate, further incubated at 37˚C, and motility zones visually inspected after 15–48 h.

The experiments were performed at least three times.

The P. aeruginosa PA14 transposon library [24] was screened on SCFM plates containing

0.3% agar and 0.4% mucin. Surfing deficiency was identified either as an inability to spread

past the point of inoculation, >70% reduced surface spreading, or a switch to in agar

growth/motility which is characteristic of swimming rather than surfing which occurs on

the surface.

Growth curves experiments and pyoverdine production

LESB58 strains were grown overnight (16–18 h) at 37˚C with shaking (250 rpm). Bacteria

were pelleted (5000 g, 3 min) and suspended in the respective growth media: KB, dYT,

MHB, or SCFM to an OD600 of 0.1. Then 200 μl was transferred to a flat bottom 96-well

polystyrene microtiter plate (Corning) and incubated at 37˚C with continuous fast linear

shaking at 567 cycles per minute (cpm) in a microplate reader (Synergy H1; BioTek).

OD600 and fluorescence [assessing pyoverdine production [41] at an excitation wave-

length of 400 nm and emission wavelength of 460 nm] readings were taken every hour

over a 24-hour period. Experiments were performed three times with at least three techni-

cal replicates.

Pyocyanin measurement

Overnight cultures of the LESB58 wild-type, ΔrelAΔspoT stringent response mutant, and its

according relA and spoT complemented strains, were grown in LB medium, washed in SCFM

and resuspended in SCFM at an adjusted OD600 of 0.1 and further cultivated at 37˚C with aer-

ation (250 rpm) for 22 h. Pyocyanin was extracted from filter-sterilized supernatants and mea-

sured as previously described [42]. Briefly, 2.88 ml chloroform was added to 4.8 ml of culture

supernatant and vortexed 10 times for 2 seconds. After centrifugation (14000 rpm, 8 min), 2.4

ml of the chloroform layer was transferred to a fresh tube and 1.2 ml of 0.2 N HCl was added

and the mixture vortexed 10 times for 2 seconds. After centrifugation (14000 rpm, 2 min), 1

ml of the top layer (containing pyocyanin) was removed and its absorbance measured at 520

nm (OD520). The OD520 values were multiplied by the extinction coefficient of 17.072 [42] to

obtain the pyocyanin concentrations (μg/ml) of the bacterial supernatants. Experiments were

performed three times with at least two technical replicates.

Adherence experiments

Strains were streaked onto KB agar plates and grown overnight at 37˚C. Bacteria were scraped

from the plates and resuspended in KB medium to an OD600 of 0.5. One hundred μl of a bacte-

rial suspension was added into polystyrene round bottom 96-well microtiter plates (Falcon)

and incubated at room temperature for 1 h. Then each well was washed three times with

water, and adhered cells subsequently stained by adding 105 μl of 0.03% crystal violet. Staining

was performed on a table top shaker (100 rpm) for 20 minutes at room temperature. Next,

plates were washed three times with water and adhered crystal violet dissolved in 110 μl 70%

ethanol at room temperature for at least 20 minutes. Absorbance was measured at 595 nm

with a BioTek plate reader. Data analysis was performed to calculate the mean and standard

deviation, after removal of outliers that were more than one standard deviation from the

mean. Data was further normalized to the wild type. Experiments were performed at least

three times with up to six technical replicates.
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Biofilm formation under flow conditions and flow-cell imaging

Overnight grown cultures of the wild-type, ΔrelAΔspoT mutant, and complemented strains

were cultivated for biofilm formation under flow conditions in chambers as described previ-

ously [43]. Briefly, flow-cells were inoculated with P. aeruginosa LESB58 strains at an OD600 of

approximately 0.005 in dYT broth and kept under static conditions for 3 h to enable adherence

to the glass chambers after which continuous flow was applied for 3 days at 37˚C. For imaging,

the cells were stained with 1 μM SYTO 9, and images captured using a confocal laser scanning

microscope (Zeiss, LSM 800) and analyzed using the Zeiss Zen software (v2.3, blue edition).

Experiments were performed at least twice.

Antibiotic susceptibility

The MIC of antibiotics for P. aeruginosa LESB58 and stringent response mutants was deter-

mined at 37˚C in Mueller-Hinton broth (MHB; Difco) using the broth microdilution assay in

96-well plates [44]. All tests were performed at least three times following the Clinical and Lab-

oratory Standards Institute recommendations. Bacterial growth was examined by visual

inspection after 24–48 h of incubation. The MIC was defined as the lowest concentration of a

compound that completely prevented visible cell growth.

Construction of cueR and pqsH overexpression plasmids

A 501-bp fragment containing the cueR gene including its upstream promoter region was PCR

amplified using the primers cueR_oe_fwd-Kpn/cueR_oe_rev-Hin. An 1,834-bp fragment con-

taining the pqsH gene including its upstream promoter region was PCR amplified using the

primers pqsH_oe_fwd-Apa/pqsH_oe_rev-Hin. Each PCR fragment was gel purified and

cloned into KpnI/HindIII or ApaI/HindIII restriction sites of plasmid pBBR1MCS-5 [45],

yielding pBBR5.cueR and pBBR5.pqsH with additional ability to be expressed from the lac pro-

moter. All constructs were sequenced before transformation into P. aeruginosa LESB58

ΔrelAΔspoT mutant as previously described [40].

RNA isolation, quantitative real-time (qRT)-PCR, and RNA-Seq

RNA was isolated from wild-type cells (edge of surfing colony) and the stringent response dou-

ble mutant (total colony) as previously described [18, 23]. Bacterial cells were collected (six

biological replicates) and resuspended in a sterile water mixture with RNAprotect Bacteria

Reagent (QIAGEN), isolated using the RNeasy Mini Kit (QIAGEN), and the RNA obtained

was DNAse-treated (Ambion/Life Technologies). RNA was quantified using the Synergy H1

microplate reader (BioTek) and RNA integrity determined using the Agilent Bioanalyzer.

Three biological replicates (S10 Fig) with the highest RIN score were selected for further analy-

sis. Quantitative Real-Time (qRT-)PCR was performed as described previously [18] at least

three times independently using rpoD for normalizing transcript levels.

Ribosomal RNA was depleted using the RiboZero Bacteria Kit (Illumina), and cDNA librar-

ies were constructed using the KAPA Stranded Total RNA Kit (KAPA Biosystems). Sequenc-

ing was performed by the University of British Columbia Sequencing Consortium using an

Illumina HiSeq-2500, generating single end reads (1×100 bp). The read quality of the sequenc-

ing samples was checked using FastQC v0.11.6 [46] and MultiQC v1.6 [47]. Alignment of tran-

scriptomic reads to the LESB58 reference genome (obtained from the Pseudomonas Genome

Database, ww.pseudomonas.com) was performed using STAR v2.6 [48]. Counts were gener-

ated using HTSeq v0.11.2 [49]. Differentially expressed (DE) genes between the double mutant
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and wild type were determined using DESeq2 v1.24.0 [50], with thresholds of adjusted p-

value� 0.05 and absolute fold change� 1.5 (S1 Data).

Functional enrichment of DE genes

Enrichment of GO terms were performed using GofuncR, testing the DE genes against a cus-

tom set of GO annotations downloaded from the Pseudomonas Genome Database. The full

list of 2,584 DE genes was split into up and down regulated, with GO enrichment being per-

formed independently on each of these sets. Results were filtered using a significance threshold

of family-wise error rate (FWER)� 0.1. Enrichment of KEGG Pathways was done using Gage

v2.3.0 on the full list of 2,584 DE genes. Results were filtered for significance based on q-

value� 0.2.

Enrichment of cellular functions, based on manually curated lists was performed on the full

list of 2,584 DE genes using Fisher’s Exact Test, implemented via a custom script in R v3.6.0 (R

Core Team, 2019). Multiple test correction was performed using the Benjamin-Hochberg

method and filtered on a significance of� 0.05.

Transmission electron microscopy (TEM)

Bacterial cells were picked from SCFM surfing plates and re-suspended in 10 μl dH2O. For-

mvar/carbon TEM grids (200 mesh, copper; Ted Pella Inc.) were placed on top of the suspen-

sion for 30 s to allow for cell adherence. Excess liquid was removed using filter paper and grids

were subsequently stained with 5 μl of 2% aqueous uranyl acetate for 30 s and then washed for

5 s in 10 μl dH2O. Images from multiple grid sections were taken with a Hitachi H-7600 trans-

mission electron microscope (UBC Bioimaging facility).

Statistical analysis

Statistical evaluations were performed using GraphPad Prism 7.0 (GraphPad Software, La

Jolla). P-values were calculated using one-way ANOVA, Kruskal-Wallis multiple-comparison

test followed by the Dunn procedure. Data was considered significant when p-values were

below 0.05.

Supporting information

S1 Text. The P. aeruginosa LESB58 stringent response mutant was impaired in swimming,

swarming, adherence, and biofilm formation, as well as being more susceptible to antibiot-

ics.

(DOCX)

S1 Table. PA14 transposon mutants that exhibited surfing deficiency. Surfing deficiency

was defined as either no motility, an alternative form of motility, or one-directional motility.

(DOCX)

S2 Table. Primers used in this study.

(DOCX)

S1 Fig. Other phenotypes of P. aeruginosa LESB58 wild-type, ΔrelAΔspoT stringent

response mutant, and relA or spoT complemented mutant strains. A) Swarming on plates

with 0.4% agar in KB medium. Plates were incubated for 48 h at 37˚C. Experiments were

repeated at least three times with similar results. B) Bacterial growth in KB liquid broth in a

96-well microtiter plate reader at 37˚C under shaking conditions (567 cpm) for 24 h. C) One-

hour adherence to plastic in KB medium at room temperature. OD values were normalized to
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the wild-type absorbance. � indicates p-value < 0.05 compared to wild-type. Experiments were

performed at least three times. Error bars indicate ± standard error. D) Biofilm formation

under flow-cell conditions in dYT broth. Cells were stained after three days for one hour with

1 μM SYTO-9 and subsequently imaged using a Zeiss LSM800 confocal microscope. E) Pyo-

verdine production (fluorescence: excitation 400 nm; emission 460 nm) after 20 h incubation

in KB broth in a 96-well plate under shaking conditions (567 cpm). F) Pyocyanin production

after 22 h incubation in SCFM broth under shaking conditions (220 rpm). E, F) Analysis was

performed using One-way ANOVA with Dunn correction. ��, indicate p-value < 0.01 com-

pared to wild-type. D-F) Experiments were performed 2–3 times. Error bars

indicate ± standard deviation.

(PNG)

S2 Fig. Swimming phenotypes of P. aeruginosa LESB58 and PAO1 wild-type, ΔrelAΔspoT
stringent response mutant, and relA or spoT complemented mutant strains. Stringent

response mutants and complements were tested under swimming conditions in KB 0.3% agar

plates for 24 h (LESB58, top) and SCFM 0.3% agar plates for 15 h (PAO1, bottom) at 37˚C.

(PNG)

S3 Fig. Transmission electron microscopy images of surfing P. aeruginosa LESB58 wild-

type and ΔrelA/ΔspoT. Representative images taken from the centre (left) and edge (middle)

of a surfing (SCFM supplemented with 0.4% mucin agar plate) colony, and stringent response

mutant (right). Experiments were repeated three times with similar results.

(PNG)

S4 Fig. Growth curves and adherence of P. aeruginosa LESB58 wild-type, ΔrelAΔspoT
stringent response mutant, and relA or spoT complemented mutant strains in dYT and

SCFM broth. A) Bacterial growth in SCFM liquid broth in a 96-well microtiter plate reader at

37˚C under shaking conditions (567 cpm) for 24 h. B) One-hour adherence to plastic in dYT

and SCFM medium at room temperature. OD values were normalized to the wild-type absor-

bance. � indicates p-value < 0.05 compared to wild-type. Experiments were performed at least

three times. Error bars indicate ± standard error.

(PNG)

S5 Fig. KEGG pathway—Quorum Sensing Pseudomonas. Visualization of DE genes of the

stringent response mutant vs. wild-type under surfing conditions. The quorum sensing path-

way (pae02024) was visualized using Pathview. Green boxes indicate a downregulation; red

boxes upregulation.

(PNG)

S6 Fig. Visualization of differentially expressed flagellar genes. Visualization of DE genes of

the stringent response mutant vs. wild-type under surfing conditions. Red bar plots indicate

upregulation and green bars downregulation. The asterisks indicate genes with low confidence

(adjusted p-value> 0.05). Dashed line shows significance threshold based on fold change.

Gene list was downloaded from KEGG.

(PNG)

S7 Fig. Visualization of differentially expressed pilus genes. Visualization of DE genes of the

stringent response mutant vs. wild-type under surfing conditions. Red bar plots indicate upre-

gulation and green bars downregulation. The asterisks indicate genes with low confidence

(adjusted p-value> 0.05). Dashed line shows significance threshold based on fold change.

Gene list was downloaded from KEGG.

(PNG)
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S8 Fig. Visualization of differentially expressed c-di-GMP genes. Visualization of DE genes

of the stringent response mutant vs. wild-type under surfing conditions. Red bar plots indicate

upregulation and green bars downregulation. The asterisks indicate genes with low confidence

(adjusted p-value> 0.05). Dashed line shows significance threshold based on fold change.

Gene list was downloaded from https://www.ncbi.nlm.nih.gov/Complete_Genomes/c-di-

GMP.html.

(PNG)

S9 Fig. Surfing motility of P. aeruginosa PA14 wild-type, the transposon insertion mutants

cueR and pqsH and their corresponding complemented strains. Surfing on 0.3% SCFM agar

supplemented with 0.4% mucin. All strains were grown for 16–18 h at 37˚C and experiments

were repeated at least 3 times with similar results.

(PNG)

S10 Fig. PCA plot of LESB58 wild-type and stringent response mutant surfing samples.

(PNG)

S1 Data. Differentially expressed genes between the double mutant and wild type with

thresholds of adjusted p-value� 0.05 and absolute fold change� 1.5.

(CSV)
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