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Abstract
Highly antibiotic resistant, microbial communities, referred 
to as biofilms, cause various life-threatening infections in hu-
mans. At least two-thirds of all clinical infections are biofilm 
associated, and antibiotic therapy regularly fails to cure pa-
tients. Anti-biofilm peptides represent a promising approach 
to treat these infections by targeting biofilm-specific charac-
teristics such as highly conserved regulatory mechanisms. 
They are being considered for clinical application and we 
discuss here key factors in discovery, design, and applica-
tion, particularly the implementation of host-mimicking 
conditions, that are required to enable the successful ad-
vancement of potent anti-biofilm peptides from the bench 
to the clinic. © 2018 S. Karger AG, Basel

Biofilms: Environmentally Shaped and 
Phenotypically Diverse

In their natural habitats, microorganisms predominant-
ly grow in biofilms, which are highly structured communi-
ties embedded in a self-produced matrix [1–5]. The forma-

tion of biofilms is considered to be an adaptive stress re-
sponse ensuring survival in rapidly changing environments 
[3–6]. Triggered by external attack, challenging physical 
conditions or nutrient limitation, planktonic cells undergo 
major gene expression changes regulated by several inter-
connected networks [4, 6]. Even though these regulatory 
networks are poorly understood, there is evidence suggest-
ing nucleotide signaling pathways, stress adaptations, and 
two component regulators play crucial roles [1, 2, 4, 7].

The biofilm growth mode follows a developmental se-
quence of multiple stages [1, 2, 4]: Initially motile cells 
attach reversibly to a surface before developing into mi-
crocolonies, which become effectively irreversibly bound 
due to the production of an extracellular matrix contain-
ing polysaccharides, proteins, and extracellular DNA 
(eDNA). Over time these cell aggregates can grow to de-
velop mature biofilms with highly variable architecture 
from surface coatings to 3D-structured colonies. Mature 
biofilms can at least partially disperse, releasing plank-
tonic cells to colonize suitable new environments and re-
initiate the biofilm-lifecycle. Intriguingly, research has 
shown that the architecture of mature biofilms depends 
not only on the microorganism but also on the environ-
ment in which it is formed [8]. The human host offers 
highly diverse environments in which biofilms can thrive.
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Clinically Relevant Biofilms

Biofilms can form on various biological surfaces or 
medical devices in the human body and are associated 
with at least two-thirds of all clinical infections [1, 2, 4, 5]. 
Medical device-related infections involve, for example, 
implants, catheters, and prosthetics [3, 4]. Biological sur-
faces in the human body prone to biofilm infections in-
clude among others teeth, bones, skin, upper respiratory 
tract, ears, lungs, and urinary tract [4]. Furthermore, bio-
film-like aggregates residing unattached in mucus layers, 
in abscess infections, or even intracellularly within host 
cells have been reported in several studies [4, 5]. The com-
plexity increases even further when taking into account 
that clinically relevant biofilm infections are usually poly-
microbial [1, 3, 5, 9]. Since biofilm growth is accompa-
nied with a substantial increase in adaptive resistance (up 
to 1,000-fold) to essentially all conventional antibiotics, 
the treatment of these infections is severely challenging 
for physicians [2–4, 6]. As a result of the complete lack of 
selective anti-biofilm drugs in the clinic, treatment is 
rather aggressive and involves either the removal of an 
implanted medical device, surgical debridement, or ad-
ministration of stringent antibiotic combination thera-
pies [2–4]. Innovative treatment strategies specifically 
targeting biofilms are urgently needed, and peptides, both 
natural and synthetic, represent a promising class of anti-
biofilm compounds [1, 4, 10].

Origin and Characteristics of Anti-Biofilm Peptides

Anti-biofilm peptides are a subset of host defense pep-
tides (HDPs), also referred to as antimicrobial peptides 
(AMPs) [3, 11]. HDPs are evolutionarily conserved in all 
kingdoms of life and act as a first line of defense against 
invading pathogens [11]. Accordingly, HDPs can exhib-
it a wide variety of different activities, sometimes even 
within the same small peptide [11, 12]. Most of these ac-
tivities provide direct (anti-biofilm, antimicrobial) or in-
direct (immunomodulatory/anti-inflammatory) protec-
tion against pathogens such as bacteria, fungi, viruses, 
and parasites [11, 12]. Despite their diversity in origin 
and function, many natural HDPs share common fea-
tures [3, 11, 12]. Typically the sequence is composed of 
12–50 amino acid residues. Their structure is associated 
with a high proportion of hydrophobic residues (~50%) 
and a positive net charge of +2 to +9 resulting from the 
presence of multiple cationic residues (Arg/Lys) [3, 11], 
allowing them to fold into amphipathic structures, often 

upon membrane interaction. Nevertheless, HDPs vary 
remarkably in their specific amino acid composition and 
primary structure. Identification of new HDP sequences 
from natural sources represents a major research focus 
in the search for anti-biofilm compounds [11]. The AMP 
Database (ADP) currently harbors more than 2,900 nat-
ural peptides, but only 33 are classified as anti-biofilm 
peptides (June-2018) [13].

The first identified anti-biofilm peptide was human 
cathelicidin LL-37, which is able to inhibit and disperse 
preformed Pseudomonas aeruginosa biofilms at one-six-
teenth the minimal inhibitory concentration (MIC) [14]. 
The characterization of LL-37 as an anti-biofilm peptide 
encouraged the discovery and design of numerous pep-
tides with anti-biofilm activity [11]. Whereas some of 
those peptides resemble conventional antibiotics and ex-
hibit anti-biofilm activity at concentrations exceeding the 
MIC, other peptides, like LL-37, are active against bio-
films at concentrations less than or equal to the MIC. This 
observation implies that anti-biofilm peptides target bio-
film-specific characteristics rather than ubiquitous bacte-
rial structures and suggests a mechanism of action dis-
tinct from antimicrobial activity against planktonic bac-
teria. We define an anti-biofilm peptide as one having 
selective activity against bacteria when growing in bio-
films as opposed to the same free living (planktonic) bac-
teria. 

Here, we highlight the potential of anti-biofilm pep-
tides emphasizing the mechanism of action, peptide ac-
tivity assessment in host-like conditions, design, synergy 
with other drugs, and delivery strategies for future clinical 
applications.

Mechanisms of Anti-Biofilm Peptides: Not Only 
Membrane Disruption

Most mechanistic studies have focused on membrane-
disrupting properties that were originally proposed to ex-
plain antimicrobial activity against planktonic bacteria 
[11, 12]. The cationic residues within the AMP sequences 
initiate their passage through the bacterial cell envelope 
by electrostatic interactions with the anionic bacterial 
surface. When encountering the cytoplasmic membrane, 
the peptides bind to the anionic headgroups of phospho-
lipids and then insert into the membrane and perturb its 
integrity, interfere with membrane-related functions 
(e.g., cell wall growth), or translocate across the mem-
brane. To explain the disruption of cytoplasmic mem-
brane integrity, the barrel-stave, torroidal-pore, aggre-
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gate, and carpet models have been proposed and have 
been compared in detail [11, 12]. However, to date, there 
is little evidence that general membrane disruption is the 
mechanism of anti-biofilm action.

Biofilm-specific targets are slowly becoming increas-
ingly recognized and investigated [15–19]. Original stud-
ies with LL-37 [14] indicated that this peptide acted by 
decreasing the attachment of bacterial cells, stimulating 
twitching motility, and influencing 2 major quorum sens-
ing systems (Las and Rhl). However, these mechanisms 
were quite unsatisfying, since each of these processes (at-
tachment, motility, quorum sensing) is quite distinct in 
other bacterial species. Study of the broad spectrum syn-
thetic bactenecin derivatives 1018 and DJK-5 provided in-
sights into the mode of action of anti-biofilm peptides 
[15]. The basis for this activity was found to be their abil-
ity to directly target the highly conserved stringent stress 
response through binding to and triggering the degrada-
tion of the signaling molecule ppGpp [16, 17]. The strin-
gent stress response is activated in nutrient-limiting con-
ditions and is considered to play an important role in bac-
terial biofilm formation and maintenance [1, 19]. In 
Gram-negative bacteria, intracellular ppGpp concentra-
tions are controlled by 2 key enzymes: RelA, which is ex-
clusively involved in synthesis, and SpoT, which is able to 
synthesize or degrade the signaling molecule [1, 19]. Re-
cently, in vivo studies using a murine cutaneous abscess 
model of P. aeruginosa supported the peptide’s effect on 
the stringent stress response pathway and demonstrated 
that treatment with DJK-5 and 1018 suppressed spoT 
 promotor activity, consistent with the possibility that 
treatment with both peptides interferes with intracellular 
 ppGpp homeostasis [19].

Other studies have shown that peptide P1 disrupts 
the architecture of Streptococcus mutans biofilm and can 
significantly decrease viable biofilm bacteria in an in vitro 
saliva-coated hydroxyapatite disc tooth model compared 
to a control peptide [15]. Although P1 can directly bind 
to bacterial cells, it shows no bactericidal activity. There-
fore, the authors hypothesized that this peptide might 
 impair secretion of and/or interaction between the extra-
cellular polymers in the matrix [15]. Another study inves-
tigated eDNA, a common component of the biofilm 
 matrix, as a potential target for two homologous fish 
HDPs piscidin-1 and piscidin-3, which carry C-terminal 
copper binding motifs [18]. Extraction of eDNA from 
P. aeruginosa biofilms treated with either of the peptides 
showed copper-dependent degradation of eDNA. Inter-
estingly, based on previous studies using microbial and 
model membranes, both peptides seem to follow mem-

brane-disrupting mechanisms, suggesting that peptides 
can act through multiple mechanisms [18].

Such mechanistic studies of anti-biofilm peptides em-
phasize their potential for clinical application. For exam-
ple, targeting conserved regulatory pathways provides 
these peptides with extremely broad-spectrum anti-bio-
film activity against multidrug resistant and clinically rel-
evant Gram-positive and Gram-negative pathogens [11]. 
Unlike conventional antibiotics, these compounds have 
been shown to interfere with secondary messenger mol-
ecules such as ppGpp [15] and can have multiple mecha-
nisms of action, which may decrease the possibility of re-
sistance development in future therapies. More recently 
there is evidence that such peptides can also target fungal 
biofilms [20], but the basis for this activity is currently 
unknown.

In vivo Activity of Anti-Biofilm Peptides

In order to translate anti-biofilm peptides successfully 
from the bench to the clinic, efficacy in animal models of 
human diseases represents an important benchmark and 
allows a far more realistic prediction of a compound’s ac-
tivity shaped by pharmacokinetics and metabolism in the 
complex host environment [21]. In vivo activity of anti-
biofilm peptides is most commonly tested in murine skin 
infection and wound-healing models [19, 22–25]. 

Synthetic bactenecin derivatives 1018 and DJK-5, 
which have potent in vitro anti-biofilm activity, do not 
clear murine cutaneous abscess infections of MDR Gram-
positive and Gram-negative pathogens, but they visually 
reduce abscess size and peptide DJK-5 modestly affects 
bacterial burden [19, 23, 25]. Furthermore, the synthetic 
anti-biofilm peptide 3002 exhibits improved in vitro 
 activity, whereas in vivo efficacy in the same infection 
model against methicillin resistant Staphylococcus aure-
us (MRSA) is not altered compared to its parental pep-
tide 1018 [25]. Accordingly, the D-enantiomeric peptide 
D-BMAP18, that is highly active against P. aeruginosa 
and Stenotrophomonas maltophilia in vitro, was unable to 
treat pulmonary infections in mice and in bronchoalveo-
lar lavage fluid [26]. Inconsistencies between in vitro and 
in vivo efficacy might be explained by physiological con-
ditions within the host influencing stability and toxicity 
of anti-biofilm peptides and thus indirectly interfering 
with their activity. For instance, 1018 has been shown to 
precipitate in vitro in the presence of mucin and ions as 
well as when injected subcutaneously into mice [27, 28]. 
In another study, topical application of the rationally de-



Dostert/Belanger/HancockJ Innate Immun4
DOI: 10.1159/000491497

signed peptide DRGN-1 significantly reduced wound size 
in a mixed biofilm-infected murine wound model [22]. In 
vitro and in vivo wound-closure activity supported the 
hypothesis that the peptide not only directly targets bac-
teria but also affects the host by modulating keratinocyte 
cell migration and proliferation [22]. 

Potent in vitro activity of anti-biofilm peptides does 
not necessarily translate into complete eradication of in-
fections in vivo [19, 22–26]. The complex host environ-
ment is most likely able to affect in vivo efficacy by inter-
fering with the activity, stability, and toxicity of anti-bio-
film peptides. Additionally, potential immunomodulatory 
activities likely play an important role in vivo that cannot 
be evaluated when assessing anti-biofilm activity in vitro. 
Critically clinical development requires evidence of in 
vivo efficacy in animal models; therefore, research has to 
address these potential issues.

Design of Anti-Biofilm Peptides

Peptide design can be used to alter the sequences of 
peptides to provide excellent activity spectra while ad-
dressing potential issues such as stability and toxicity. Re-
cently used strategies to optimize anti-biofilm peptides 
include alteration of the amino acid composition, cre-
ation of hybrid peptides, and the design of structurally 
and functionally related compounds referred to as pepti-
domimetics [22, 24, 25, 27, 29–33].

Alteration of the amino acid composition is by far the 
most studied approach and can be applied to modulate 
activity, stability, solubility/aggregation behavior, and cy-
totoxicity of anti-biofilm peptides [22, 24, 25, 27, 29, 33]. 
Using peptides with known sequences and functions as 
templates allows for the development of modified pep-
tides with improved properties by testing various amino 
acid substitutions using systematic or random design 
principles [12]. For instance, Chung et al. [22] designed 
peptide DRGN-1, that significantly reduced wound size 
in a mixed biofilm-infected murine wound model, by re-
arranging only the first 2 N-terminal amino acids serine 
and proline. Both parental and altered peptides showed 
similar secondary structures and only minor differences 
in their interactions with the bacterial membrane. There-
fore, the authors hypothesized that removing serine from 
the N-terminus interferes with a signal for proteolytic 
degradation, and thus spares the peptide derivative from 
degradation by the mitochondrial ClpXP system. In an-
other study, substitutions of multiple amino acid residues 
in the sequence of LL-37-inspired peptide OP-145 result-

ed in the production of synthetic peptides with improved 
stability to plasma proteases [24]. Recently, the synthesis 
of a series of 1018 derivatives with amino acid substitu-
tions, mainly in the hydrophobic stretch, allowed the in-
vestigation of sequence features associated with aggrega-
tion [11, 27]. The identification of peptide sequences with 
decreased aggregation tendency but similar immuno-
modulatory activity suggested that precipitation can be 
avoided by the rational design of peptides.

Due to the continuous increase in information on se-
quences and structures of effective anti-biofilm peptides, 
computational modeling strategies, such as quantitative 
structure-activity relationship (QSAR) modeling, have 
become increasingly attractive. Based on experimental 
data, QSAR models identify the relationship(s) between 
chemical structure and biological activity by defining mo-
lecular descriptors for each individual peptide sequence. 
These models can then be used to predict the anti-biofilm 
activity of peptide sequences in silico [11, 12, 25, 29]. 
Haney et al. [25] developed a QSAR model based on the 
experimentally evaluated in vitro anti-biofilm activity of 
96 single amino acid variants of 1018 against MRSA. Sub-
sequent synthesis and analysis of chosen peptides with 
predicted anti-biofilm activity showed 85% accuracy and 
resulted in the in silico identification and subsequent syn-
thesis of anti-biofilm peptide 3002. This peptide exhibit-
ed potent in vitro anti-biofilm activity against MRSA at 
an eightfold decreased concentration compared to 1018 
[25]. Rajput et al. [33] went a step further and used any 
literature that described chemical compounds inhibiting 
biofilms, including anti-biofilm peptides, to generate a 
QSAR model that demonstrated 80% accuracy in identi-
fying the anti-biofilm activity of unknown chemicals. 
Furthermore, Sharma et al. [29] created 6 different mod-
els for the prediction of effective anti-biofilm peptides 
based on machine learning tools and implemented them 
in a predictive tool launched on the freely accessible web-
server design Peptides Against Bacterial Biofilms. 

An alternative approach to improve anti-biofilm pep-
tides is through the design of hybrid peptides. Generally, 
hybrid peptides combine the functional domains of mul-
tiple peptides in order to increase activity and reduce cy-
totoxicity [31, 34]. Yu et al. [31] engineered the hybrid 
peptide TIH3F by fusing a truncated cathelicidin se-
quence with a trypsin inhibitor loop. While retaining very 
low in vitro cytotoxicity against human erythrocytes and 
human umbilical vein endothelial cells, the stability of the 
anti-biofilm peptide in the presence of 20% serum and 
physiological salt concentrations was significantly im-
proved.
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Peptidomimetics refer to compounds that mimic the 
structural features and/or biological activity of natural 
HDPs [35]. Accordingly, there are many possible modifi-
cations ranging from the incorporation of unnatural ami-
no acids (of which more than 700 are known [36]) and 
peptides with altered backbones, to entirely different 
chemical structures. These modifications and structural 
differences are often able to resolve stability and cytotox-
icity issues [30, 32, 35]. Raman et al. [30], for example, 
designed a β-peptide with anti-fungal and anti-biofilm 
activity against Candida albicans, which remained struc-
turally stable and active in synthetic urine media. A pep-
tidomimetic of 5 residues containing only arginine and 
biphenylalanine also showed anti-biofilm activity against 
multiple Gram-negative and Gram-positive bacteria, and 
exhibited very low toxicity to human erythrocytes and 
Vero monkey kidney epithelial cells, purportedly due to 
its short size and low hydrophobicity [32]. Conversely 
one study showed that enantiomeric peptides with D 
amino acids tended to have potent activity while being 
protease resistant [16, 17].

Peptide design and engineering is a powerful tool to 
produce anti-biofilm peptide sequences with increased 
activity and stability but decreased cytotoxicity under 
physiologically relevant conditions. Furthermore, engi-
neering anti-biofilm peptides suitable for the treatment of 
specific polymicrobial biofilm communities in defined 
environments has been proposed as a strategy in order to 
overcome challenges in the human host [37]. In this re-
gard, peptides have been shown to work against oral poly-
microbial communities [38].

Synergistic Combination Therapy to Fight  
Biofilm Infections

Well-designed, anti-biofilm peptides on their own can 
have significant efficacy in vitro and in vivo [16–19, 23]. 
Many biofilms are accessible to topical treatment in the 
form of creams, aerosols, or direct application to sites that 
have been subjected to surgical debridement or drainage. 
Indeed this matches the known successful applications of 
peptides in clinical trials where evidence of efficacy via lo-
cal treatment has been obtained [12, 39]. However, pep-
tides tend to be expensive drugs and although they are 
thought to engender very low resistance, there is always 
the possibility this will arise during therapy. To reduce 
peptide concentrations and their drawbacks, the synergis-
tic effects of peptides in combination with other antimi-
crobial agents are being tested to reduce the amount of 

each agent required, while increasing efficacy and de-
creasing costs [10]. In vitro anti-biofilm peptides show 
strong synergy with a wide range of antibiotics reducing 
antibiotic concentrations by up to 64-fold while simulta-
neously reducing peptide concentrations [40]. Similarly 
combination therapy has been applied to treat biofilms 
with natural and synthetic peptides in vitro and in vivo 
and includes the use of peptides in combination with bio-
logically active materials such as enzymes, anti-quorum 
sensing molecules, antibiotics, and other peptides [41–
43]. Dosler et al. [42] showed that the hybrid peptide ce-
cropin A(1–7)-melittin A(2–9) amide (CAMA) syner-
gized with tobramycin, ciprofloxacin, and colistin to treat 
P. aeruginosa biofilms, decreasing the amount of peptide 
by tenfold and the amount of antibiotic by up to 8-fold. 
Although these experiments were performed in synthetic 
lab media, other research has shown that peptide LL-37 
led to a 6 log-fold reduction in bacteria when combined 
with the antibiotic azithromycin against P. aeruginosa, 
Acinetobacter baumannii, and Klebsiella pneumoniae 
when grown in tissue culture media with 20% human se-
rum [43]. Furthermore, our lab has recently shown syn-
ergy between peptides DJK-5, 1018, 1002, and HHC-10 
and antibiotics ciprofloxacin, gentamicin, meropenem, 
and erythromycin, effectively decreasing abscess size and 
bacterial load in a mouse model of high density ESKAPE 
(Enterococcus faecium, S. aureus, K. pneumoniae, A. bau-
mannii, P. aeruginosa, and Enterobacter species) pathogen 
infections [44]. This is of particular interest, since DJK-5 
targets the stringent response regulating biofilm forma-
tion and maintenance, which has been shown to play a 
role in abscess formation and susceptibility to antibiotics/
persistence [10, 23, 44]. 

Treating high-density bacterial infections or biofilms 
with a combination of anti-biofilm peptides that can tar-
get specific regulatory mechanisms and conventional an-
tibiotics is a promising approach to improve clinical ther-
apies, reduce cost of goods, and minimize resistance de-
velopment.

Challenges Facing Clinical Application of  
Anti-Biofilm Peptides

Their broad spectrum of activity and synergy with 
conventional antibiotics make anti-biofilm peptides es-
pecially attractive for clinical applications [16–18]. How-
ever, future research must address some important bar-
riers limiting the use of these peptides therapeutically. 
For instance, antimicrobial agents are often tested in lab-
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oratory conditions such as Mueller Hinton broth (MHB), 
and other nutrient rich laboratory media, which is not 
physiologically relevant [10, 43], while many AMPs have 
been tested for efficacy in phosphate buffer, which is also 
non-physiological. Many parameters such as carbon and 
nitrogen sources, iron availability, and divalent cation 
concentrations differ significantly in lab media or buffers 
from those in an infected host [10, 45, 46]. HDPs exposed 
to components of plasma, serum, saliva, mucus, or urine 
for example, often exhibit very different activity levels 
from those in lab media for various reasons [24, 27, 46–
49]. Furthermore, the environment in which a bacterium 
grows can substantially affect the biofilm architecture 
and alter anti-biofilm peptide binding and/or penetra-
tion [45].

To overcome the lack of transferability from in vitro to 
in vivo activity, research on anti-microbial agents needs to 
address the influence of host conditions on biofilm struc-
tures and peptide activity [2, 45, 50]. The introduction of 
physiologically relevant host materials into antimicrobial 
bioassays can partially address this issue, but we have to 

be wary of the influence of host molecules on traditional 
detection methods such as optical density and fluores-
cence. Host-mimicking in vitro conditions that have been 
used to test the effects of anti-biofilm treatments against 
biofilm forming pathogens are summarized in Table 1. 
The alternative activity of AMPs in whole blood, plasma, 
and serum compared to conventional media conditions 
has been demonstrated with AMPs RP-1 and RP-11, de-
signed based on antimicrobial platelet proteins. In bioma-
trices, these peptides were found to have increased anti-
microbial activity against Escherichia coli, reducing bacte-
rial loads by up to 3 log-fold at concentrations that were 
not effective in MHB [51]. P. aeruginosa biofilms, when 
grown in a 3D epithelial cell model mimicking the human 
lung, exhibited decreased susceptibility to the peptide an-
tibiotic colistin and D-enantiomeric peptide DJK-5 in the 
presence of fetal bovine serum compared to serum-free 
conditions [50]; intriguingly, the combination of DJK-5 
with tobramycin substantially reduced the formation of P. 
aeruginosa biofilms in this 3D model. Recently, de Breij et 
al. [24] designed an LL-37-derived peptide, SAAP-148, 

Table 1. Host-mimicking conditions for anti-biofilm treatment testing

Host environment Host-mimicking condition Bacteria Treatment Reference

Tooth Saliva coated HA discs S. mutans P1 [15]

Blood/tissue PBS with human plasma P. aeruginosa,
S. aureus

SAAP-148 [24]

Skin Ex vivo epithelial skin cell model MRSA,
A. baumannii

SAAP-148 [24]

Lung Brochoalveolar lavage fluid P. aeruginosa
S. maltophilia

D-BMAP18 [26]

Urinary tract Synthetic urine media C. albicans β-peptide-1 [32]

Blood/tissue Tissue culture media with 
human serum

P. aeruginosa,
A. baumannii,
K. pneumoniae

Azithromycin
Colistin

[43]

Lung Cystic fibrosis airway mucus P. aeruginosa Colistin
Liposomes

[48]

Lung Lung epithelial cell model with 
and without fetal bovine serum

P. aeruginosa Colistin
DJK-5

[50]

Blood Whole human blood, plasma and serum E. coli R-1, R-11 [51]

Lung Airway mucus P. aeruginosa Amikacin
Liposomes

[70]

Lung Artificial sputum medium P. aeruginosa Lin-SB056-1
EDTA

[72]

Lung Human airway epithelial cells P. aeruginosa WLBU2 [73]



Anti-Biofilm Peptides to Treat Clinically 
Relevant Biofilm Infections

7J Innate Immun
DOI: 10.1159/000491497

with bactericidal and anti-biofilm activity at 12.8 μM 
against P. aeruginosa and Staphylococcus aureus in 50% 
human plasma. Even though the peptide’s activity was 
negatively influenced by human plasma, the effective con-
centrations in physiological conditions were still lower 
than those of clinical phase peptides such as Omiganan 
and Pexiganan that required > 102.4 and 25.6 μM respec-
tively. Furthermore, the peptide also showed efficacy 
against S. aureus and A. baumannii in human skin ex vivo 
and murine in vivo models [24]. Ultimately clinical devel-
opment will require the evidence of in vivo efficacy in an-
imal models as mentioned above.

Despite some promising discoveries of peptides with 
anti-biofilm activity under physiologically relevant con-
ditions, there are still a number of barriers limiting clini-
cal use. These limitations include stability and efficacy in 
the host environment, possible peptide-induced toxicity 
toward host cells, aggregation-induced toxicity, and high 
production costs.

The stability of anti-biofilm peptides under physio-
logical conditions depends on their sensitivity to degra-
dation by proteolytic enzymes and inhibition by salts, 
proteins, and ions in the host environment [49, 52, 53]. 
Bacteria can protect themselves from AMPs such as hu-
man LL-37 and beta-defensins, by producing peptide-
degrading enzymes such as aureolysin in S. aureus and 
elastase in P. aeruginosa [53]. Additionally, digestive en-
zymes produced by mammals, such as trypsin and chy-
motrypsin, can cause the cleavage of amino acids that are 
important for the structure and function of the anti-bio-
film peptides [53]. One solution to such toxicities is to 
design peptides with altered backbones (peptidomimet-
ics) or D-enantiomeric residues as discussed above. Al-
ternatively judicious formulations can also influence the 
in vivo stability of peptides. Moreover, a large issue in-
fluencing the efficacy and toxicity of peptides in vivo is 
their tendency to precipitate or aggregate in these condi-
tions. Cationic amphipathic peptides such as β-amyloid 
are known to have a strong tendency to aggregate into 
fibrils leading to the inflammatory brain disorder Al-
zheimer’s [27]. We consider this to be likely a class prop-
erty of the anti-biofilm, antimicrobial, and immuno-
modulatory peptides mentioned here, since they have the 
potential to form visible aggregates under conditions 
containing high concentrations of particular salts or se-
rum proteins, and this can reduce in vitro immunomod-
ulatory or anti-biofilm activity [53]. Haney et al. [27] 
studied the aggregation of immunomodulatory/anti-
biofilm peptide 1018 in various anion and cation solu-
tions. Peptide 1018 aggregated (and/or formed hydro-

gels) in a concentration-dependent manner in buffers 
containing certain anions, particularly phosphate, ben-
zoate, citrate, and nitrate, according to the Hofmeister 
series of anions, whereas altering the cation had little ef-
fect except at very high concentrations. It also co-precip-
itated serum proteins in tissue culture medium [27] and 
demonstrated precipitation in vivo using a mouse skin 
injection model [28]. This latter observation might ex-
plain the toxicity of certain peptides due to their precip-
itation in the blood when applied intravenously. It was 
further demonstrated that peptide aggregation inter-
fered with its immunomodulatory activities against pe-
ripheral blood mononuclear cells [27, 49]. In studies with 
other peptides, concentration-dependent aggregation 
can trigger enhanced immunogenicity which might pose 
a major problem for clinical use of peptide treatments by 
inducing chemokine activity and causing allergic re-
sponses or cytotoxic effects [54]. Again appropriate for-
mulation can influence aggregation as well as cytotoxic-
ity [28]. Early peptide work assessed cytotoxicity in terms 
of its ability to cause red blood cell lysis. More recently, 
cytotoxicity has been determined by measuring the re-
lease of cytosolic lactate dehydrogenase from lysed iso-
lated primary human/mammalian cells or cell lines. 
However, the results of these assays likely do not reflect 
the overall cytotoxicity of peptides within the host and, 
in our experience, aggregation is a more serious concern.

Finally, synthesis methods involving expensive inter-
mediates and many steps, and high therapeutic doses, 
raise the costs for large scale production of anti-biofilm 
peptides substantially, when compared to conventional 
antibiotics, and thus limit clinical applications [24]. In 
order to develop more cost-effective synthesis strategies 
for the production of anti-biofilm and AMPs, research 
focuses on recombinant expression systems in bacteria, 
yeast, and plants [55].

Strategies to address the limitations of anti-biofilm 
peptides including design and synergistic combination 
therapies were highlighted above and are summarized in 
Figure 1. One of the most profound methods of counter-
acting these issues is therapeutic delivery methods involv-
ing more sophisticated formulation methodologies.

Formulation and Therapeutic Delivery of  
Anti-Biofilm Peptides

As discussed above, peptide design strategies and nov-
el peptide discovery have made some inroads into over-
coming potential limitations of therapeutic treatments 
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against biofilm infections [3, 12]. A common method for 
increasing bioavailability, thus reducing therapeutic 
amounts, overcoming aggregation and other physical 
limitations of drugs such as excessive hydrophobicity, 
and decreasing any toxic effects involves advanced for-
mulation. Thus, beyond making peptide modifications, 
increased pharmacological research endeavors are need-
ed to find innovative ways of delivering these agents, to 
enhance solubility, avoid toxicity, have more targeted de-
livery to the site of infection, and ultimately to increase 
effectiveness in the host environment. Due to unknown 
systemic toxicities and aggregation issues as well as the 
cost of goods, most AMP treatments to date have focused 
on topical applications, which allow the use of smaller 
amounts of peptide applied to confined sites [10]. Anti-
biofilm peptides will also likely be applied topically, since 
biofilms generally occur locally rather than systemically. 
By formulating anti-biofilm peptides with polymers or 
gels, tethering anti-biofilm peptides to biomedical devic-
es, or delivering anti-biofilm peptides within nanocarri-
ers such as nanoparticles or liposomes, peptide efficacy 
might be improved. 

One potential method of improving topical applica-
tion of anti-biofilm peptides to infections is through the 
use of gel formulations. By administering peptides to in-
fected wounds in viscous gel-like polymer delivery sys-
tems, the peptides will become localized at the site of in-
fection and exhibit increased resistance to exogenous 
proteases [56]. For example, topical delivery of the LL-37 
derivative P60.4Ac in a water-based hypromellose gel de-
creased the peptide’s cytotoxic effects and allowed for the 
killing of greater than 85% of MRSA biofilm in a human 
epidermal model [57]. The peptide-gel formulation re-
tained antimicrobial activity and had increased ability to 
eradicate biofilm on epidermal cells, while reducing cyto-
toxicity, as compared to peptide dissolved in phosphate 
buffered saline [57]. This same gel formulation was suc-
cessfully used by de Breij et al. [24] to administer anti-
biofilm peptide SAAP-148 to MRSA and A. baumannii 
biofilms in human skin and murine models without any 
systemic toxicity or irritation.

Biofilm infections often occur on biomedical devices 
such as catheters and prosthetics [3, 4]. These infections 
can be difficult to remove and often require complete re-
placement of the biomedical device, which is not always 
successful in preventing an infection from re-occurring 
[58]. Biofilms on biomedical devices can be limited by 
coating the device surface with peptides [59]. Yu et al. [60] 
tethered an AMP to polyurethane in a mouse catheter 
model infected with P. aeruginosa. The coating led to a 4 
log-fold reduction in bacterial load compared to uncoat-
ed material and also reduced bacterial load in urine, with-
out having toxic effects on eukaryotic cells. By coating 
biomedical devices with AMPs, the treatment can prevent 
initial biofilm formation and is localized to the site of in-
fection, which potentially reduces systemic selective pres-
sures for resistance.

Immobilizing anti-biofilm peptides on nanoparticles 
has also been explored as a novel approach to peptide 
delivery [61]. Metal nanoparticles such as nickel, silver, 
and gold have been used as antimicrobial treatments in 
vitro and have potent activity against biofilms [62, 63]. 
Silver nanoparticles, for example, have been used to 
eradicate up to 99% of A. baumannii biofilms in vitro 
[63]. Nanoparticles also have potential to be synergisti-
cally linked to antimicrobial agents to decrease treatment 
load and toxicity while increasing effectiveness of the 
treatment [62, 64]. Chen and colleagues, for example, de-
signed nickel magnetic nanoparticles linked to LL-37 
and used them to treat established E. coli biofilms in vitro 
[64]. Similarly, the cationic lipopeptide antibiotic colis-
tin was attached to nanoparticles made of poly(lactide-

Therapeutic applications
of anti-biofilm peptides

Clinical sites of
biofilm infections
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Lungs
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Blood

Medical
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with other antimicrobials

Liposomes and nanoparticles

Peptide-coated
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Fig. 1. Strategies for therapeutic applications of anti-biofilm pep-
tides to treat clinically relevant biofilm infections.
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co-glycolide) and used to treat pre-established P. aerugi-
nosa biofilms, resulting in 90% biofilm reduction within 
24 h. Though the anti-biofilm effects have only been test-
ed in vitro so far, the nanoparticle-peptide combination 
is being engineered for lung delivery through an inhala-
tion method and showed promising penetration through 
a mucus layer mimicking the conditions of the lungs of 
cystic fibrosis patients [48].

Lipid-based vesicles composed of lipid bilayers encap-
sulating an aqueous center are one of the most widely 
utilized nanotechnology applications for delivering treat-
ments to biofilm infections [4, 65]. These liposomes are 
nontoxic to mammalian cells, and have shown efficacy for 
drug delivery in mouse models [65, 66]. Liposomes can 
have many different phospholipid compositions, sizes, 
and surface properties, which determine their ability to 
encapsulate the drug payload, their stability in the host 
environment, and their interactions with biological mol-
ecules [66]. Because their lipid bilayer structure mimics 
the cell membrane, and may allow fusion with bacterial 
membranes, depending on their characteristics, the en-
capsulated compounds have increased bioavailability and 
biocompatibility and can release entrapped drugs into the 
cell membranes or interior of microorganisms [67]. To 
target cells within a biofilm, the liposomes must have ap-
propriate surface characteristics including charge and 
lipid composition. Accordingly, using liposomes with a 
cationic charge has been suggested to prolong contact be-
tween the anti-biofilm agent and the biofilm, allowing for 
more effective treatment [66]. Such liposomes would not 
however, be readily usable in the context of cationic pep-
tides, as it is necessary to use negatively charged lipids to 
obtain good loading of cationic peptides; however, addi-
tion of polycationic peptides to anionic liposomes would 
confer increased positive charge. Unilamellar and multi-
lamellar vesicle liposomes by themselves have been shown 
to have anti-biofilm activity against S. aureus and P. ae-
ruginosa biofilm formation [68], although more promis-
ing anti-biofilm applications are associated with the en-
capsulation of anti-biofilm agents [66]. Indeed, liposomes 
encapsulating antibiotics have shown efficacy in inhibit-
ing the formation of S. aureus biofilms [69, 70]. The cat-
ionic aminoglycoside antibiotic amikacin was loaded into 
neutral liposomes composed of 1,2-dipalmitoyl-sn-glyce-
ro-3-phosphocholine and cholesterol and designed for 
inhalational use to treat P. aeruginosa biofilms. Fluores-
cently labeled liposome formulations were measured for 
their ability to diffuse through patient lung mucus sam-
ples and P. aeruginosa biofilms, and antibiotic release was 
monitored over time. It was found that more than 60% of 

the liposomes administered were able to diffuse through 
mucus layers and penetrate biofilms, exhibiting sustained 
release of antibiotic. In a rat model of P. aeruginosa lung 
infection using inoculated agar beads, liposomal formu-
lations were able to reduce bacterial loads by 2 log-fold 
with an estimated dose of 6 mg/kg, whereas the same con-
centration of free amikacin had no effect [70]. Addition-
ally, this treatment was proposed to be biofilm specific 
due to the ability of liposomes to bind to charged mucins 
at the sites of bacterial biofilm infection and increase drug 
release in response to rhamnolipid-mediated liposome 
burst [70]. 

Overall, gel-based formulations, tethering techniques, 
nanoparticles, and liposomes have the potential to act as 
a safe delivery system for anti-biofilm peptides to the site 
of infection and can also increase peptide potency and 
stability. 

Future Perspectives for Discovery, Design, and 
Application of Anti-Biofilm Peptides

The recalcitrant, adaptive nature of microbial biofilms 
is a serious problem in tissue and medical device-related 
infections. Natural and synthetic anti-biofilm peptides 
are promising agents for the treatment of biofilm infec-
tions, with low-resistance profiles and broad spectrum 
activity against pre-formed biofilms [4, 11]. These pep-
tides can be designed to improve their anti-biofilm spec-
ificity and stability inside the host, while reducing cyto-
toxicity and aggregation [22, 25, 29, 32, 35]. Furthermore, 
peptide design has the potential to engineer peptide se-
quences and structures that can specifically target the reg-
ulatory mechanisms behind biofilm formation, such as 
ubiquitous secondary messengers that trigger adaptive 
responses to diverse disease-related niches [16, 17, 23]. By 
exploiting these mechanisms, anti-biofilm peptides can 
become more targeted to specific infections and more ef-
ficacious against the adaptive biofilm growth state. The 
design of peptides with multiple, distinct anti-biofilm 
mechanisms combined in one molecule has enormous 
potential, possibly allowing the creation of a peptide se-
quence with activity and stability in different disease-re-
lated environments and thus the treatment of a variety of 
biofilm-related diseases. Although computational design 
strategies for anti-biofilm structure and function can be 
fine-tuned to a certain extent, the effectiveness of peptide 
treatments against human infections has to take into ac-
count the environment in which the peptides will be used 
clinically. This includes the environmental conditions 
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shaping the biofilm architecture and biofilm susceptibil-
ity, as well as the relevant serum, salt, and matrix compo-
nents present that may inhibit the activity of an anti-bio-
film peptide in the host environment. Initial screening of 
anti-biofilm activity as well as mechanistic studies should 
be done in conditions mimicking the host environment 
to avoid wasting time and money associated with animal 
studies and clinical trials with peptides that might not 
even be active in these conditions. Similarly, we must de-
velop standard and high throughput methods for screen-
ing anti-biofilm activity both in vitro and in vivo. In this 
regard, a new abscess animal model that has been adapted 
to use with all ESKAPE pathogens [53, 71], and a recent-
ly described human skin model [24], offer relatively sim-
ple primary screening methods for treatment of biofilm 
infections.

Furthermore, although research focused on anti-bio-
film peptide design has the potential to modify and select 
for defined activity and performance, many of the issues 
facing peptide efficacy cannot be addressed by peptide 
design alone. Anti-biofilm peptides will probably not rep-
resent a stand-alone solution, but in our opinion have 
greater promise as adjunctive therapies with other anti-
microbial agents [41, 42]. Combining anti-biofilm pep-
tides with antibiotics, other peptides, or completely dif-

ferent antimicrobial compounds, may enable targeting of 
multiple aspects of microbial biofilm development and 
can improve the treatment efficacy, reduce the effective 
concentration of each antimicrobial agent required for 
treatment, and ultimately reduce the cost of effective 
therapeutic treatment. Finally, the development of deliv-
ery methods for anti-biofilm peptides, such as gel formu-
lations, surface tethered biomedical devices, and nano-
carriers, can increase peptide localization and decrease 
cytotoxic effects by improving delivery and biocompati-
bility [56].
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