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Abstract The regulation of the innate immune response, our first line of
defence against infectious disease, does not involve simple linear pathways but
rather complex inter-connected networks of interactions, regulatory loops, and
multifaceted transcriptional responses. Given this complexity, systems biology
approaches to investigate the host innate immune response are essential. InnateDB
(www.innatedb.com) is a publicly available database and integrated analysis plat-
form specifically designed to facilitate systems-level analyses of the mammalian
innate immune response and is one of the most comprehensive databases of
all human and mouse molecular interactions (130,000+) and pathways (3,000+).
Building upon this, more than 12,900 innate immunity-relevant molecular inter-
actions have been contextually annotated through detailed review of the literature
providing novel insight into the innate immunity interactome. Integrated bioinfor-
matics solutions include the ability to investigate user-supplied quantitative data in
a network and pathway context using pathway, ontology and transcription factor
over-representation analyses, and network visualisation and analysis tools. In this
chapter, we introduce innate immunity as a complex system and a provide a detailed
step-by-step guide to using InnateDB and other bioinformatics tools to investigate
the host response to infectious disease.
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22.1 Introduction to Innate Immunity

All organisms are faced with a constant bombardment of microbes which they
must recognize and mount an appropriate immune response against. The immune
response has traditionally been divided into two different branches, the adaptive
immune response and the innate immune response. Adaptive immunity, which
evolved in the first jawed vertebrates, is the immune response that is primarily asso-
ciated with T and B lymphocytes (although other cell types, such as dendritic cells,
are also important). The adaptive immune response, through the rearrangement of
antigen receptor gene segments, can produce vast numbers of receptors capable
of recognizing many millions of foreign antigens. Adaptive immunity discrimi-
nates between self and non-self and is also associated with immunological memory
whereby the immune response can mount a faster and more efficient response to an
antigen that it has previously encountered.

Innate immunity, on the other hand, represents a much more ancient system and
is the first line of defense against infectious agents in species ranging from insects
to plants to mammals, including humans. Until a little over a decade ago, innate
immunity was considered to be of little interest in species with an adaptive immune
system. However, since the discovery of innate immunity receptors and pathways
that are evolutionarily conserved between Drosophila and humans (Medzhitov et al.
1997) there has been an explosion of interest in innate immunity. Innate immunity
is now known to be critical for the response to pathogens not only in plants and
invertebrates but also in humans and other vertebrates, effectively dealing with most
short-term microbial insults without the need for an adaptive response. Innate immu-
nity also responds very quickly to an infectious agent (within hours) in comparison
to adaptive immunity, which often takes several days to mount a sufficient response.
Innate immunity is now also recognized as essential to inducing an appropriate
adaptive response and importantly, the effector mechanisms of innate immunity
overlap considerably with those of the adaptive immune response (MacLeod and
Wetzler 2007; Manicassamy and Pulendran 2009).

Innate immunity may be constitutive or inducible in response to pathogens. The
constitutive components of the innate immune system include the barrier functions
of the epithelial layers of the skin and mucous membranes, which prevent entry
of pathogens. Physiological barriers such as temperature and pH can limit the sur-
vival conditions of particular microorganisms. Furthermore, certain enzymes, such
as lysozyme, are constitutively expressed and under some circumstances can destroy
invading pathogens by disrupting bacterial membrane integrity.

Most defense mechanisms are, however, inducible and require the specific recog-
nition of infectious microorganisms. Epithelial cells act not only as a physical barrier
to pathogens, but are also a primary site for the production of inducible chemokines
and host defense peptides, such as defensins, that orchestrate innate immunity. Other
cell types such as macrophages, neutrophils, and dendritic cells, can phagocytose or
internalize invading pathogens and kill them. These cell types are also responsible
in a large part for the production of pro-inflammatory cytokines such as interleukins
and tumor necrosis factor (TNF). Inflammation is a component of innate immunity
that plays a number of key roles in combating infections that are centered around
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local effects such as the recruitment of additional immune response cells to the site
of infection. If not tightly regulated, however, inflammation can be detrimental to the
host and an overwhelming immune response can lead to what is sometimes called
a cytokine storm. Sepsis, for example, is a dysregulated systemic inflammatory
response that results in more than 200,000 deaths a year in the United States alone
(Angus et al. 2001).

Cytokines also cause the induction of acute-phase proteins, which modulate
immunity serving a broad variety of functions ranging from inhibition of microbes
through to coagulation and regulation of inflammation. Other cytokines known as
interferons are induced in response to microbial signals (particularly viral RNA) and
essentially induce an antiviral state, although they also have roles in defense against
other microbes ranging from intracellular bacteria to parasites. These proteins also
activate natural killer (NK) cells and macrophages that can directly kill or engulf
infected cells.

Despite the lack of true antigenic specificity evident in adaptive immunity, which
is possible by the rearrangement of antibody and receptor genes, the germ-line
encoded components of the innate immune system still permit quite a broad cov-
erage in defense against pathogens. This is accomplished through the recognition
of conserved motifs or signatures (often termed pathogen associated molecular pat-
terns or PAMPs) on the surface or within the invading pathogens. These pathogen
signature molecules are usually functionally important to the microorganism, are
conceptually conserved, and are relatively resistant to mutation. A wide variety of
pathogen signatures have been identified including lipopolysaccharide (LPS), pep-
tidoglycan, lipoteichoic acid, lipopeptides, flagellin, bacterial CpG DNA, and viral
nucleic acids. The receptors responsible for interactions with bacterial signatures
are known as pattern recognition receptors (PRRs) (Medzhitov and Janeway 1997).
PRRs are known to be expressed by a range of cell types, including leukocytes
and epithelial cells. A wide array of structurally and functionally diverse PRRs has
evolved.

The best-studied family of PRRs in humans are the Toll-like receptors (TLRs)
(see for review Akira 2006). Ten human TLR genes have been identified and the
encoded receptors have specificity for a range of PAMPs (Chuang and Ulevitch
2000, 2001; Medzhitov et al. 1997; Rock et al. 1998; Takeuchi et al. 1999). TLR2,
for example, recognizes lipoteichoic acid, LPS is the ligand for TLR4, TLR3 rec-
ognizes double-stranded RNA, and TLR5 recognizes flagellin, a protein component
of bacterial flagella. Activation of one of the TLRs by its relevant PAMP results in a
signaling cascade that leads to the activation of nuclear factor kappa B (NF-κB) and
other transcription factors. These transcription factors then regulate the expression
of a very large array of effector genes.

22.2 Complexity of Innate Immunity – Why Systems Approaches
are Necessary

Over the last ten years, considerable progress has been made in understanding the
innate immune response including the detailed investigation of many of the critical
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signaling pathways involved. It is becoming increasingly clear, however, that the
innate immune response does not involve straightforward linear pathways but rather
complex inter-connected networks of pathways and molecular interactions, feed-
forward and feedback regulatory loops, multifaceted transcriptional responses, and
regulation at the transcriptional, post-transcriptional, and post-translational levels
(Gardy et al. 2009; Lee and Kim 2007; Tegner et al. 2006) (Fig. 22.1).

Fig. 22.1 Appreciating the complexity of the innate immune response. (a) Illustrates a canonical
view of mammalian TLR4 signaling via NF-κB, in which the process is represented as a simple
linear pathway. (b) Demonstrates that this simple pathway is in fact much more complex and is
under multiple levels of control. (c) Illustrates a more accurate depiction of the complexity of the
system. InnateDB was used to retrieve interactions for each of the 47 proteins shown in (b) and
the resulting network was visualized using Cerebral/Cytoscape. It contains 1,346 genes or proteins
and 2,531 interactions. Reprinted from Gardy et al. (2009), with permission from Elsevier

It has become evident that the TLR signaling pathways (discussed above) are just
one of several PRR pathways. The importance of cytoplasmic PRRs in the intracel-
lular recognition of pathogens has become increasingly clear. These cytoplasmic
PRRs include the nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs) (Inohara and Nunez 2001; Kanneganti et al. 2007) and the retinoic acid-
inducible gene 1 (RIG-1)-like receptors (RLRs) (Thompson and Locarnini 2007;
Yoneyama et al. 2004). RIG-I, for example, signals via several proteins, including
mitochondrial antiviral signaling (MAVS), to activate transcription factors such as
NF-κB and interferon regulatory factor 3 (IRF3), which regulates the expression
of type I interferons. A broad range of additional pathways are now implicated as
having a role in innate immunity.

Adding to this complexity is that a single pathogen signature molecule can
trigger multiple different pathways simultaneously – both RIG-I and TLR3 rec-
ognize dsRNA, for example (Honda and Taniguchi 2006), while LPS stimulates a
variety of myeloid differentiation primary response gene 88 (MyD88)-dependent
and (MyD88)-independent pathways. Furthermore, during infection it is likely that
several different pathogen signatures are presented simultaneously. Simultaneous
stimulation of TLRs by multiple ligands has been shown to result in complex
synergistic responses in terms of cytokine production (Hsueh et al. 2009).
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Many of the signaling pathways in the innate immune response also dis-
play additional layers of complexity including cross-talk between pathways, such
as the recently described cross-talk between the TLR4 and cAMP pathways in
macrophages (Wall et al. 2009). There is also apparent redundancy in signaling
components leading to unexpected phenotypes, such as the case of patients defi-
cient in MyD88 (von Bernuth et al. 2008). MyD88 is a central adaptor molecule in
TLR signaling – yet MyD88-deficient patients do not show broad susceptibility to
infection as would be expected. Feedback and feedforward loops provide an addi-
tional layer of signaling complexity. The suppressor of cytokine signaling (SOCS)
proteins, for example, have been identified as a negative feedback loop in cytokine
signaling (Dimitriou et al. 2008).

The complexity of the innate immune response is particularly apparent at
the transcriptional and post-transcriptional levels. In terms of the transcriptional
response, hundreds or even thousands of genes may be differentially expressed.
Exposure of peripheral blood mononuclear cells (PBMCs) to LPS (a component
of Gram-negative bacteria), for example, induces a potent innate immune response.
This single stimulus induces changes in several hundred genes; some of which are
specifically involved in immunity and others which form part of a general response
to injury (Brownstein et al. 2006). Adding to the complexity is the fact that the
response to a stimulus varies not only with the cell type being examined but also
with the particular time point. Monocytes, B-cells, T-cells, and dendritic cells, for
example, have all been shown to have different responses to LPS (Mookherjee et al.
2009), while significant changes are observed in the LPS response between 2, 7,
and 24 h (Nilsson et al. 2006), with complex dynamics occurring depending on the
duration of exposure.

Although important transcription factors such as NF-κB and activator protein 1
(AP-1) are often discussed as the downstream activators of the innate immune
response, it is now evident that the transcriptional response is regulated by panels of
transcriptional factors rather than one or two factors. These panels of transcriptional
factors are differentially activated over the course of the innate immune response
and have complex behavior depending on the type and strength of microbial stim-
ulus. Several transcription factors, for example, have been shown to be activated in
response to the immunomodulatory host defense peptide, LL-37 (Mookherjee et al.
2009). Additionally, a series of papers by the Institute of Systems Biology in Seattle,
has examined which transcription factors are active over the time-course of the LPS
response in macrophages, revealing that transcription factor binding sites in the pro-
moter regions of genes at later time points were enriched for early response factors
(Gilchrist et al. 2006; Ramsey et al. 2008). Recently, a regulatory network, involv-
ing the mouse transcription factors CCAAT/enhancer-binding protein delta (Cebpd),
activating transcription factor 3 (Atf3) and NF-κB, was found to distinguish between
transient and persistent signaling via TLR4 (Litvak et al. 2009).

Until recently, much of what was known about which transcription factors reg-
ulate which genes was computationally predicted based on binding site analysis
of a gene’s promoter. Computational prediction of gene regulation by transcrip-
tion factors, however, has a high false positive rate due to the fact that the short
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transcription factor binding site sequences can occur by chance throughout the
genome (Kolchanov et al. 2007). Fortunately, transcription factor binding can now
be verified on a genomic scale by the powerful experimental methods based on chro-
matin immunoprecipitation (ChIP) (Collas and Dahl 2008). In these techniques,
DNA sequences that are bound by proteins are either identified by microarray
“chips” (ChIP-chip) or by sequencing (ChIP-seq). Using ChIP-chip methods, the
transcription factors NF-κB and interferon regulatory factor 1 (IRF1) were deter-
mined to bind a set of co-expressed genes in TLR-stimulated murine macrophages
(Ramsey et al. 2008) and a gene cluster regulated by the transcription factor STAT3
was found to be downstream of leukemia inhibitory factor (LIF) (Langlais et al.
2008). Similarly, using ChIP-seq, STAT1 was found to bind a large number of
interferon-responsive human genes (Robertson et al. 2007).

Aside from transcriptional regulation, other multiple layers of regulation all
add to the complexity of the innate immune response. MicroRNAs, for exam-
ple, are now being shown to be pivotal regulators of the innate immune response
(Bi et al. 2009; Pedersen and David 2008). MicroRNAs are short (typically ∼22
nucleotides), non-coding RNA molecules that bind specifically to mRNA and act
as post-transcriptional regulators of gene expression altering mRNA stability and
translation efficiency. More than 700 microRNAs have been found in mammalian
cells and they play roles in a range of processes including development, homeosta-
sis, and differentiation, as well as regulation of immune system responses in both
adaptive and innate immunity. The microRNA let-7i, for example, has been shown
to regulate TLR4 expression (Chen et al. 2007), while mir-146 regulates several
signaling proteins involved in the innate immune response (Taganov et al. 2006).

Changes to the activity of proteins can also occur due to post-translational
modifications which alter the biological activity of the protein without necessar-
ily changing gene expression. Such modifications include degradation (proteolysis),
as well as covalent modifications (for example ubiquitination, phosphorylation, and
acetylation). The protein Eyes absent 4 (EYA4) has recently been shown to enhance
the innate immune response to viruses. This activity is abolished through the muta-
tion of its threonine-phosphatase domain, revealing that this protein regulates innate
immunity via changes in the phosphorylation of target signaling proteins (Okabe
et al. 2009). A series of other phosphorylation events are known to be essential
to signaling in innate immunity. Additionally, ubiquitination, a reversible covalent
modification of proteins involving the addition of ubiquitin, has also emerged as
a key post-translational mechanism in regulating innate immunity (Bhoj and Chen
2009). For example, two E3 ubiquitin ligases, cellular inhibitor of apoptosis protein
1 (cIAP1) and cIAP2, have been shown to be required for NLR signaling (Bertrand
et al. 2009).

To account for these many layers of regulation and complexity (and numer-
ous more not discussed here) in investigations of the innate immune response,
researchers are now adopting systems biology approaches. In the next section we
will discuss some computational tools that are emerging to facilitate such efforts.
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22.3 Computational Resources for Innate Immunity

As the complexity of the innate immune response has become appreciated and
researchers begin to adopt systems biology approaches to investigate innate
immunity (Andersen et al. 2008; Gilchrist et al. 2006; Oda and Kitano 2006;
Tegner et al. 2006), a variety of bioinformatics resources with an innate
immunity or broader immunology focus have been developed that facilitate
these efforts. Several groups, for instance, offer immunology-relevant tran-
scriptomics data sets, in addition to the large microarray repositories. These
databases and data sets include the Reference Database of Immune Cells
(RefDIC, refdic.rcai.riken.jp) (Hijikata et al. 2007), the Immune Response In
Silico database (IRIS, share.gene.com/clark.iris.2004/iris/iris.html) (Abbas et al.
2005), and resources from the Institute for Systems Biology (ISB), includ-
ing Affymetrix expression data from TLR ligand-stimulated mouse macrophages
(www.innateimmunity-systemsbiology.org) (Korb et al. 2008). Additionally, the
Immunological Genome Project (www.immgen.org) (Heng and Painter 2008) is
a network of laboratories generating rigorously standardized genome-wide gene
expression data sets of over 200 different mouse immune cell populations under a
variety of conditions. Other valuable resources include the Innate Immune Database
(db.systemsbiology.net/IIDB), which stores both predicted and ChIP-chip verified
transcription factor binding sites (Korb et al. 2008). The IIDB currently includes
data on the regulation of 2000 mouse genes that are differentially expressed in
LPS-stimulated macrophages.

Of particular note is InnateDB (www.innatedb.com), the first database and
integrated analysis platform specifically designed to facilitate systems-level
analyses of the innate immune response (Lynn et al. 2008). Although InnateDB
manual curation, as the name suggests, has focused on annotating molecular
interactions and pathways involved in the innate immune response, InnateDB is, in
fact, one of the most comprehensive databases of all human and mouse molecular
interactions and pathways, consisting of more than 130,000 molecular interactions
and 3,000+ pathways, integrated from the major public molecular interaction and
pathway databases. To enrich our knowledge of innate immunity networks and
pathways, the InnateDB curation team has contextually annotated more than 12,900
innate immunity-relevant molecular interactions through the review of 3,000 plus
biomedical articles. Interactions are annotated using Open Biomedical Ontology
(OBO) controlled vocabulary for terms such as cell type, tissue type, interaction
detection method, etc., in compliance with the Proteomics Standards Initiative
Molecular Interaction (PSI-MI) 2.5 XML format (Hermjakob et al. 2004), and in
a manner that adheres to the recently proposed “minimum information required for
reporting a molecular interaction experiment” (MIMIx) guidelines (Orchard et al.
2007; Smith et al. 2007).

InnateDB is also an analysis platform, offering seamlessly integrated, user-
friendly bioinformatics tools, including pathway and ontology analysis, network
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visualization and analysis, and the ability to upload and analyze user-supplied gene
expression or other quantitative data in a network and/or pathway context. In this
chapter, we present a guide to using InnateDB and selected other computational
resources to explore quantitative -omics data in a more systems-oriented manner.

22.4 A Walk Through the Analysis of a Smallpox Gene
Expression Data Set Using InnateDB – Pathways,
Processes, and Interaction Networks

22.4.1 Introduction

One of the most powerful features of InnateDB is the ease with which one can
quickly analyze a gene list with associated quantitative data – for example, differ-
entially expressed genes identified through a microarray experiment – and generate
hypotheses about the molecular functions, biological processes, signaling pathways,
and molecular interaction networks or sub-networks that may be contributing to the
phenomenon being investigated.

Previously, interpretation of such data sets required submitting one’s data to mul-
tiple Web sites. Each Web site typically had its own preferred file format, often
offered only a single type of analysis, and generated output in different formats.
In contrast, the analysis environment provided by InnateDB brings many of the
most popular types of analysis together “under one roof”. With just a few clicks, an
InnateDB user can submit a single file to multiple types of analyses and can down-
load the results in a simple, intuitive spreadsheet format or interactively visualize
their results in the context of a molecular interaction network.

In the following sections, we will demonstrate how InnateDB can be used to
interpret the results of a microarray experiment. We will begin with examining
the type of data that can be submitted to InnateDB, and will move on to how to
retrieve gene, interaction, and pathway data as well as perform Gene Ontology
(Ashburner et al. 2000) and pathway over-representation analyses. We encourage
the reader to follow along with our analysis using the sample data file provided
(InnateDB_Sample_Data.txt).

The sample data set is from an interesting paper published in the Proceedings
of the National Academy of Sciences (Rubins et al. 2004) and is freely avail-
able to all readers at http://www.pnas.org/content/101/42/15190.full. In this study,
the researchers examined the host response to smallpox. Smallpox is a highly
contagious disease caused by variola virus that can result in several distinct clin-
ical outcomes. While some smallpox infections lead only to minor disease, most
infections lead to “ordinary smallpox” – a disfiguring disorder in which the body is
covered in pustules which can, in severe cases, merge into a single large confluent
pustule, essentially detaching the outermost layer of skin. Ordinary smallpox is fatal
in approximately 30–75% of cases depending on confluence of the pustules, while
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“hemorrhagic smallpox” – an especially severe form of the disease that can develop
in certain patients – is nearly 100% fatal.

Through vaccination, smallpox has been eradicated. Since 1977, no natural cases
of the disease have occurred, and the only remaining stocks of the virus exist in
tightly controlled international repositories in Atlanta, Georgia and Novosibirsk,
Russia. Concerns over use of the virus as an agent of bioterrorism remain, however,
and thus research into the disease continues (Cohen and Enserink 2002).

The variola virus causing smallpox is a double-stranded DNA virus whose
genome encodes 197 proteins and many of which are known to interfere with
the host’s innate immune response (Seet et al. 2003). In the Rubins et al. study
(Rubins et al. 2004), the authors explored the host response to smallpox using
microarrays to gain further insight into how the virus subverts the host’s innate
defenses. Working under Biosafety Level 4 and using the virus stock housed at
Atlanta’s Centers for Disease Control and Prevention, the authors infected macaques
with smallpox virus, using these primates as a surrogate for the human system.
Twenty-two macaques were exposed to smallpox through various routes of adminis-
tration and peripheral blood samples were collected at several time points following
infection. The study generated a significant amount of data; however, for the pur-
poses of our demonstration, we will be examining only the data from two time
points – three and four days after a combined IV/aerosol infection. The complete
data set is available at http://microarray-pubs.stanford.edu/smallpox/raw_data.html.
Our sample data file contains fold-change values (and associated p-values) for
approximately 500 genes that were up- or down-regulated at least 1.5-fold at day
3 and/or day 4 in comparison to day 0 (uninfected). Note that although the exper-
iment was performed in macaques, human microarrays were used to profile gene
expression changes. InnateDB’s analysis tools can only be used on human or mouse
data at present, although orthology predictions may be used to map data from other
species to human/mouse identifiers.

22.4.2 Preparing Data for Analysis in InnateDB

Following a microarray experiment or any other experimental approach in which
a list of interesting genes is generated, a researcher must prepare his/her gene
list for analysis. In the case of preparing microarray or other quantitative data for
submission to InnateDB, we recommend the following steps:

1. Ensure each gene in the data set is identified with one of the cross-reference
identifiers (accession numbers) InnateDB supports. Supported identifiers include
Ensembl IDs (gene, protein, or transcript) (Hubbard et al. 2009), EntrezGene
(Maglott et al. 2005), RefSeq (Pruitt et al. 2009), and UniProt (The UniProt
Consortium 2008) (Table 22.1). If your data is in a different format than those
supported, there are a number of freely available Web-based tools that can
translate from one type of identifier to another, for example, IDconverter (Alibes
et al. 2007).
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Table 22.1 InnateDB supports several common identifiers. Here, the various identifiers for the
human Toll-like receptor 4 gene are shown as an example

Identifier Web site Format

Ensembl Gene http://www.ensembl.org ENSG00000136869
Ensembl Transcript http://www.ensembl.org ENST00000394487

ENST00000355622
Ensembl Protein http://www.ensembl.org ENSP00000377997

ENSP00000363089
Entrez Gene http://www.ncbi.nlm.nih.gov/

sites/entrez?db=gene
7099

RefSeq http://www.ncbi.nlm.nih.gov/
RefSeq/

NM_138554

UniProt http://www.uniprot.org/ O00206

Table 22.2 Sample data for submission to InnateDB. Each gene is identified using one of the
accepted identifiers listed in Table 22.1, and fold change and associated p-values are given for each
gene at two time points

Ensembl Gene
Day 3 fold
change

Day 3
p-value

Day 4 fold
change

Day 4
p-value

ENSG00000128274 1.5 0.015 1.7 0.014
ENSG00000206410 1.8 0.020 1.7 0.007
ENSG00000143878 1.1 0.026 3.3 0.008
ENSG00000014257 2 0.049 1.7 0.011
ENSG00000172594 1.5 0.010 −0.3 0.029

2. Although InnateDB can be used in the analysis of a list of gene identifiers without
any associated quantitative data, such analyses are more powerful if quantitative
data is included with the gene list. In our sample data set, we have fold change
in gene expression values from two time points – day 3 and day 4 – for each of
our genes. This data is also associated with p-values that provide a measure of
the biological variability associated with each fold-change value. These p-values
can be included in your file for submission to InnateDB, although they are not
required. InnateDB expects fold-change values to be absolute values (not log
values) in the format where +2 represents a twofold increase in gene expression
and –2 represents a twofold decrease.

3. In most microarray data sets, one encounters the issue of multiple probes map-
ping to a single gene. In these situations, InnateDB averages the multiple fold
change and associated p-values such that a single average fold change and
p-value is associated with each gene. One may prefer, however, to adopt an alter-
native approach to these cases – for example, keeping only the probe with the
most significant p-value. If desired, such changes must be made to the data set
prior to upload to InnateDB.
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4. Before submitting data to any analytical tool, it is worthwhile considering the
comparisons that one may ultimately want to make. In an experiment with a sin-
gle condition, it is often sufficient to simply analyze the complete list of genes
differentially expressed at that condition. In experiments with multiple condi-
tions, however, such as drug or no drug, and/or with multiple time points, it is
preferable to identify subsets of genes of interest for analysis as considering the
entire set can lead to errors in interpretation. For example, in an analysis com-
paring drug-treated cells to placebo-treated cells, an over-representation analysis
performed on the complete data set may not yield meaningful results – it is only
when genes expressed in response to the drug but not the placebo are considered
that the analysis generates meaningful results. Before uploading a complex data
set, consider splitting it into multiple files, one for each subset of genes you wish
to analyze. With our sample data set, we may wish to consider each time point
independently, or consider them both together.

22.4.3 Uploading Data to InnateDB

Once a tab-delimited text or Excel spreadsheet (.xls only) containing your genes
of interest and, if desired, associated quantitative measurements and p-values has
been prepared, it can be uploaded to the InnateDB Web site. This is illustrated in
Fig. 22.2.

Fig. 22.2 Uploading data to InnateDB. Genes of interest can be uploaded directly from any
tab-delimited text or Excel spreadsheet format (.xls only) or, provided less than 1000 genes are
submitted, can be pasted into the text box. One of four common identifiers must be used to identify
the genes, and InnateDB must be told which type of identifier was used and which column of the
data set contains the identifiers. Expression data can also be provided
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1. From the Data Analysis tab, select a file to upload by clicking on the “Upload
File” button. One can upload a tab-delimited or Excel file of protein/gene iden-
tifiers or accession numbers and obtain a list of all genes, proteins, pathways,
interactors, or interactions that they are associated with. Alternatively, click on
the “Web Form” button and paste your tab-delimited data in the text box (max.
1000 lines). Note that there should be only one accession number per row. Probes
that map to multiple genes should be removed.

2. On the next page, click on the column headers to specify which column in your
data file contains the identifiers/accession numbers for each gene (and which
database they come from) (Fig. 22.3). This is called the “Cross-reference ID”.
You can only specify one cross-reference ID column. Accession numbers from
the following databases are currently accepted: Ensembl, RefSeq, EntrezGene,
and UniProt. You must also specify the Cross-reference database. This is the
database where the identifiers in the cross-reference column come from. In the
sample data set column 1 contains Ensembl IDs which should be used as the
cross-reference IDs.

3. If you have included gene expression data, identify which columns contain the
gene expression values and their associated p-values (Fig. 22.3). You may also
identify the column containing the probe IDs if you have included them in your

Fig. 22.3 Specify which columns in your uploaded file contain the relevant data. Click on the col-
umn headers to specify which column in your data file contains the identifiers/accession numbers
for each gene (called the Cross-reference ID column) and which database they come from (called
the Cross-reference database). If you have included gene expression data, identify which columns
contain the gene expression values and their associated p-values. You may also identify the column
containing the probe IDs
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file (not included in the sample data set). Including quantitative data, for instance,
gene expression values, is optional but recommended. It is a very useful way
to investigate one’s data in a pathway and interaction network context and to
carry out subsequent analyses, such as pathway over-representation analysis.
Remember, expression values must be in the format where a value of +2 rep-
resents a twofold increase in expression and a value of –2 a twofold decrease in
expression. You can specify values from up to ten different conditions or time
points. You can also specify a name for each condition. The sample data set con-
tains gene expression data for day 3 and day 4 in column 2 and 4, respectively,
with associated p-values for these conditions in column 3 and 5.

4. Choose whether you want to return interactions, interactors, genes, or path-
ways associated with your list of genes or proteins (Fig. 22.4). Returning a
list of interactions allows one to identify all interactions in InnateDB involv-
ing the genes (or their encoded products) in the uploaded list and to construct
a network of these interactions for visualization and further analysis. Detailed
annotation and evidence are then available for each interaction. The resulting
interaction network may then be downloaded in a variety of supported formats
or interactively visualized. Returning a list of interactors allows one to iden-
tify all molecules in InnateDB which interact with the genes (or their encoded
products) in the uploaded list. Returning a list of genes provides detailed anno-
tation for each gene in the uploaded list and is a prerequisite to performing a
Gene Ontology over-representation analysis. Returning a list of pathways pro-
vides pathway annotation for each gene in the uploaded list and is a prerequisite
to performing a pathway over-representation analysis.

Fig. 22.4 Choose which data to return. Choose whether you want to return interactions,
interactors, genes, or pathways associated with your list of genes or proteins
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22.4.4 Performing a Gene Ontology Over-Representation Analysis

An over-representation analysis (ORA) examines a gene list for the occurrence of
annotation terms, such as a Gene Ontology (GO) (Ashburner et al. 2000) term
or pathway membership, which are more prevalent in the data set than expected
by chance. The InnateDB over-representation analysis tools provide a number of
statistical methods for pathway and GO analysis, including the Hypergeometric
distribution (default), the Fisher exact test, and the Chi-square test. P-values are
automatically corrected using the Benjamini and Hochberg correction for the false
discovery rate (Benjamini and Hochberg 1995), although one can also opt to use the
more conservative Bonferroni correction. In this way, annotations that occur more
frequently than expected in a gene list can be identified, and may point toward a
biological process or pathway that is being differentially regulated in the condition
of interest.

1. Gene Ontology is a standardized method for representing gene product attributes
such as their functions, the biological processes they participate in, and their
cellular compartment, and thus is a useful way of finding out if a gene set has
known roles in a wide variety of biological processes. To perform a GO ORA,
first upload a gene list via the Data Analysis page as described above, and select
the Return a list of genes option. You will be taken to the gene results page,
providing detailed annotation for each gene you have uploaded, including the
gene name, species, orthologs, chromosomal location and number of interactions
in which it is a participant.

2. From the gene results page, click on the red Ontology ORA button at the top of
the page.

3. You must now specify the type of data set you have provided, as it influences
how InnateDB performs its statistical analysis (Fig. 22.5). If you have uploaded
a complete microarray data set, where gene expression values for all probes
on the array have been provided regardless of whether they are differentially
expressed or not, choose the first option – Complete microarray data set. You
must then specify a fold change and p-value cutoff to distinguish differentially
expressed genes from genes that are unchanged in their expression. The default
is a fold change in expression of 1.5 with a p-value < 0.05. Using this option
the ORA algorithm considers the proportion of differentially expressed genes
on the array in the calculation of statistical significance. This option, however,
usually performs significantly more statistical tests than the second option dis-
cussed below as almost all GO terms are represented in the data set. This can
mean that the correction for multiple testing is particularly conservative. The
benefit of this option is that it can calculate the statistics for up to 10 conditions
or time points simultaneously.
If you are only providing a subset of genes from the microarray, as with the
example data set, choose the second option – Data set consisting of a subset of
genes from the entire array. In our example, although we have uploaded gene
expression data for two conditions, the expression values will not be used in
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Fig. 22.5 Selecting the type of data for an over-representation analysis (ORA). To perform the
appropriate statistical analysis, InnateDB must know whether a complete microarray data set has
been uploaded or whether only a subset of genes from such an experiment was provided. For the
purposes of our sample data set, the latter option – a subset of genes – should be selected. The
analysis and correction methods can be changed using the drop down menus below, although we
strongly recommend the use of the default parameters

the over-representation analysis. The analysis will be performed on the gene list
provided regardless of any expression values and will calculate the statistics for
the gene list and not each condition separately. If you wish to analyze each time
point separately you will need to create separate files for each data set. The algo-
rithm used in this option is slightly different to the first option as the proportion
of differentially expressed genes on the array is unknown and the expected pro-
portion is calculated based on the relative proportion of genes in InnateDB (for
a given species). The benefit of this option is that it tends to be less conservative
than the first option and it is often easier to interpret one data set at a time.
WARNING: If you try to analyze a subset of genes using the entire data set
algorithm or vice versa your results will not be correct.

4. As discussed above there are several statistical methods and multiple testing cor-
rection methods that one may choose for the analysis. You may change these
options using the dropdown menus at the bottom of the screen (Fig. 22.5), how-
ever, we recommend using the default selections for optimal performance. Click
Submit to commence the analysis.

5. The results will be displayed as a table (Fig. 22.6) ordered by the GO over-
representation p-value, with the most significant GO term associated with the
data set at the top of the table and other GO terms beneath it. The GO Term
Name column contains the GO term itself, followed by its classification in
brackets – molecular function, biological process, or cellular compartment. #



546 D.J. Lynn et al.

Fig. 22.6 Gene Ontology ORA results. InnateDB results are displayed in tabular format. The
Display Options panel allows the columns of table to be customized, while sorting of columns in
either ascending or descending order is permitted. The results table can be downloaded in one of
several formats using the download buttons. GO terms are initially sorted in ascending order of
p-value, and red arrows indicate the statistically significant enrichment of a specific GO term

Uploaded Genes Associated with GO Term denotes how many genes in the sub-
mitted list are annotated with that GO term, while # Genes Associated with
GO Term in InnateDB denotes how many genes in InnateDB (either human or
mouse, depending on the data you have uploaded) are annotated with that term.
Proportion is the former count divided by the latter. GO Term ORA P-Value
reflects the likelihood of seeing that GO term enriched in a gene list of that size
by chance alone, while GO Term ORA P-Value (Corrected) is this value after
correction for multiple testing. P-values denoted by a red arrow provide a quick
visual reference as to which GO terms are significantly more enriched in the
uploaded data set than expected by chance. Clicking on Summary will provide a
definition of the GO term as well as a list of all genes in the gene list associated
with that term and all genes in InnateDB associated with that term.

6. Any results table in InnateDB can be redrawn or reordered according to a user’s
needs using the Display Options and Sorted By controls. Using the Display
Options controls, set InnateDB to display 200 rows. Scrolling through the
updated results table, you will notice that in our sample data set more than
200 GO terms are over-represented when uncorrected p-values are considered,
while approximately half as many are significantly enriched when corrected
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p-values are used instead. As with all such statistical analyses, the InnateDB
ORA tools provide a guide as to which GO terms or pathway annotations are sta-
tistically over-represented – critical evaluation is needed to decide which results
are biologically significant. Correction for multiple testing can be very conserva-
tive in some cases, with some terms potentially being of biological significance
without being statistically significant. Conversely, some terms are found to be
statistically significant but are unlikely to be of biological relevance since many
genes/proteins are associated with several GO terms.

7. Complete results tables can be downloaded in a variety of formats. Select MS
Excel, TAB, or CSV to open the data in one of these three formats suitable for a
spreadsheet. You may wish to edit this file to remove terms with a p-value of
> 0.05. In our case, deleting any corrected p-value greater than 0.05 leaves
us with 72 over-represented GO terms (note that this number may change as
InnateDB is continually updated).

Examining the results of our GO ORA reveals that the functions and processes
associated with early smallpox response genes are heavily skewed toward the innate
immune response, while cellular compartment annotations are primarily extracel-
lular, consistent with a scenario in which chemokines and cytokines are being
released in response to the virus and activating key innate immune signaling path-
ways. Interferon (IFN), interleukin-1 (IL-1), and immunoglobulin all appear to play
important roles in the host response to smallpox, and we also observe the presence
of terms indicating cellular activation, proliferation, and differentiation. Note that
the purpose of this chapter is not to provide an in-depth re-analysis of this smallpox
data set but to provide a guide as to how one might perform such analysis using
InnateDB.

22.4.5 Performing a Pathway ORA

Pathways are the biochemical engines for transducing signals (often received by
receptors) into output responses (e.g., activation of a transcription factor and down-
stream gene expression). The principles underlying a pathway ORA are identical
to those of the GO ORA – pathway annotations associated with genes in the
gene list are identified, and those that occur more often in the gene list than
would be expected by chance are identified. The pathway ORA tends to provide
a more focused picture of processes differentially regulated in a condition of inter-
est than the GO ORA and is often the second step in analysis of microarray data.
InnateDB automatically tests for over-representation of differentially expressed
genes in the more than 3,000 pathways that are collectively annotated in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al.
2007), the NCI-Nature Pathway Interaction Database (PID) (http://pid.nci.nih.gov),
the Integrating Network Objects with Hierarchies (INOH) pathway database
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(http://www.inoh.org/), and the NetPath (http://www.netpath.org) and Reactome
databases (Joshi-Tope et al. 2005).

For pathway over-representation analyses, it is worth including both up- and
down-regulated genes in each analysis, as both can be informative in the context
of a signaling pathway that may contain both positive and negative regulations. For
example, up-regulation of the components of a pathway and down-regulation of the
pathway’s negative regulators are both equally informative. In our sample analysis,
we will consider both time points together.

1. To perform a pathway ORA, select Return a list of pathways from the Data
Analysis upload tool. You will be taken to the pathway results page, listing each
of the pathways that the genes you have uploaded participate in. Certain genes
may not be annotated as belonging to any pathways, while many genes belong
to multiple pathways.

2. From the pathway results page, select the Pathway ORA button. As in the GO
ORA, select whether the gene list represents a complete microarray or a subset
of genes of interest.

3. The results are displayed in a similar format to those of the GO ORA (Fig. 22.7),
with the pathway name, numbers of uploaded and total number of genes

Fig. 22.7 Pathway ORA results. Similar to GO ORA results, pathway ORA results are also dis-
played in a table. In this case, however, each pathway contains a link to the Cerebral visualization
tool, which launches a viewer that will draw the pathway in question and color it with any uploaded
quantitative data
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belonging to that pathway, and uncorrected and corrected p-values all shown.
Clicking on Summary provides a description of the pathway and the database
from which it was sourced, as well as an overview of the genes from your list
belonging to that pathway versus all genes in InnateDB belonging to that path-
way. Download your results in any of the three available formats and view the
resulting spreadsheet (Fig. 22.8).

Fig. 22.8 A spreadsheet downloaded from InnateDB containing pathway ORA results.
Downloading the results of a pathway ORA is often useful, as it enables a user to assess which path-
ways have been duplicated in their results. Duplicate pathways can be removed from the results or
be amalgamated into a larger pathway containing all of the known components of a given pathway

4. Because InnateDB sources its pathway data from multiple databases, each with
its own interpretations of the components of a given pathway, you will observe
some degree of duplication in the results; however, this is outweighed by the
extra annotation that can be obtained from different data sources. In our sample
results, for instance, the interleukin-1 pathway is seen four times: three records
are from the INOH database and distinguish IL-1 signaling through three distinct
pathways (p38, I-Kappa-B Kinase (IKK)-NFκB, and c-Jun N-terminal kinase
(JNK)), while one result from the PID NCI database contains over twice as
many pathway components as the INOH records. We recommend inspecting
one’s results and amalgamating the data from duplicate pathways into a single
representative pathway containing as many members as possible.

In the pathway ORA results for the smallpox data set, the predominance of
innate immune processes was again noted; however one now has a more specific
idea of pathways that are being affected. The involvement of the Janus kinase
(JAK) – signal transducer and activator of transcription (STAT) and osteopontin
pathways, for example, point toward a role for interferon-alpha signaling in the
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response to smallpox, while interferon-gamma is also implicated. Both T cell
and B-cell signaling processes are enriched, as are traditional innate immune
signaling pathways, such as TLR signaling, the p38 mitogen-activated protein
kinase (MAPK) pathway, and NFκB.

22.4.6 Visualizing Pathway Data with Cerebral

When a pathway of interest has been identified, it is often preferable to view that
pathway in graphical format rather than as a table showing the individual com-
ponents of the pathway. Previously, this would have required downloading the
interactions between the pathway members, formatting them for input to interaction
visualization software, and then manually adjusting the resulting diagram to create a
more biologically relevant pathway view. With InnateDB, however, the above steps
can be completed in a single click, even for a user unfamiliar with interaction visual-
ization. Furthermore, InnateDB allows users to quickly “paint” a pathway diagram
with quantitative data, such as the fold changes from our microarray experiment.

Network and pathway visualization in InnateDB is carried out using Cerebral
(Cell Region-Based Rendering And Layout) (Barsky et al. 2007). Cerebral is a plug-
in for the Cytoscape biomolecular interaction viewer (Shannon et al. 2003) that
draws a biological network in a more pathway-like layout. The screen is divided
into layers, one for each cellular compartment, and the nodes representing genes and
proteins are confined to their associated layer. Cerebral is also designed to facilitate
the simultaneous comparison of quantitative data from multiple conditions, such
as microarray data from different time points. Furthermore, as a Cytoscape plug-in,
Cerebral allows users to access the powerful functions associated with this program.
Discussion of Cytoscape’s features is beyond the scope of this chapter. We suggest
the reader visit the Cytoscape Web site (http://www.cytoscape.org/) to familiarize
themselves with this important tool and work through the many online tutorials that
are available.

1. In the pathway ORA results, locate “IFN gamma signaling pathway (JAK1 JAK2
STAT1)” from INOH (Pathway ID 376). In this pathway, four of the six pathway
components are differentially expressed in our gene list. Click the Cerebral but-
ton to launch a Java Web start instance of Cytoscape with the Cerebral plug-in
installed. It is not necessary to have Cytoscape installed on your computer, as
the Web start will download and install a temporary instance of the program. A
recent version of Java must be installed on your computer.

2. Cerebral will load the requested pathway and lay it out according to the anno-
tated localization layer for each gene/protein in the pathway (Fig. 22.9). Nodes
are placed in a layer according to the localization inferred from Gene Ontology
(Ashburner et al. 2000) or InnateDB curation of subcellular localization. For
display purposes, nodes with multiple potential localizations will be assigned
a single preferential localization; however, all annotated localizations will be
displayed in the Node Attribute Browser.
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Fig. 22.9 The over-represented interferon-gamma pathway visualized in Cytoscape with the
Cerebral plugin. The larger network view to the right shows the pathway laid out according to
subcellular localization information derived from InnateDB. To the left of the main view, one
mini-view for each gene expression condition (two, in this case) colors the network according to
the quantitative data provided. Sliders and coloring schemes in the Control Panel area allow the
user to adjust the look and feel of their diagram, while a profile view beneath the main view dis-
plays the quantitative data as a series of profiles. Here, the STAT1 node is selected in the main
view, and its expression profile is highlighted in the profile view. Edge widths indicate the number
of publications in InnateDB supporting a particular interaction – the more publications the thicker
the line. Dashed edges have only one supporting publication

3. In the main display window, a large view of the pathway is shown with nodes
colored according to their subcellular localization as provided from InnateDB.
To improve image quality, select the High quality rendering button from the
Cerebral panel at left. To the left are two smaller views – one for each time
point of expression data we have provided. In these views, the nodes are colored
according to their expression value, and the coloring scheme can be changed
by clicking on the Expression and Comparison color scale tabs in the Cerebral
panel. To promote the coloring of a mini-view into the main view, simply click
anywhere in the mini-view (clicking on the mini-view’s highlighted names will
permit a return to default coloring). Note that the mini-views and main view
are linked – zooming, highlighting, and selecting in one view will propagate
that action across all views. The bottom panel shows the profile view – each
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gene’s expression profile is represented as a line, and a k-means clustering tool at
the right-hand side allows users to quickly cluster genes with similar expression
profiles.

4. Cerebral views can be exported as graphics suitable for inclusion in a pre-
sentation or publication by choosing Plugins > Create Cerebral View, while
the complete Cytoscape session can be saved by choosing File > Save As.
If Cytoscape is installed locally, these session files can be accessed anytime,
allowing one to easily return to a given analysis.

By examining data overlaid onto individual pathways of interest using Cerebral,
trends in the data that were not obvious from the table-format results alone can be
readily observed. In this example, for instance, we see that while the expression of
the interferon-gamma receptors increases slightly from day 3 to day 4, expression of
the interferon-gamma ligand returns to baseline levels on day 4, as do levels of the
STAT1 transcription factor, indicating a possible abatement of the interferon-gamma
response after an early peak post-infection.

22.4.7 Generating and Exploring Molecular Interaction Networks
Using InnateDB

InnateDB pathway and Gene Ontology analyses can be very powerful in
determining which annotated pathways and biological processes are significantly
associated with a data set of genes. Such analyses, however, rely on using the asso-
ciation of genes to known biological pathways or Gene Ontology terms. Annotation
of pathways and Gene Ontology terms is far from complete and pathways are often
annotated as relatively simple linear cascades. Network analysis has the ability to
move the investigation from this simple view of the signaling response to a more
comprehensive analysis of the molecular interactions between genes of interest
and their encoded proteins and RNAs, potentially allowing one to uncover as yet
unknown signaling cascades or pathways, functionally relevant sub-networks and
the central molecules, or hubs, of these networks.

InnateDB is one of the most comprehensive databases of all human and mouse
experimentally supported molecular interactions (∼130,000) but also specifically
includes annotation on more than 12,900 manually curated human and mouse innate
immunity-relevant interactions, many of which are not present in any other database.
InnateDB allows one to upload a gene list of interest along with associated gene
expression data and returns this data integrated in a molecular interaction network
context for visualization and further interrogation and analysis.

1. Return to the Data Analysis page and this time, select Return a list of inter-
actions. This will bring up the interaction filtering dialog box. Three options
are available. Do not filter the results will display all of the interactions that all
of the uploaded genes participate in. By investigating networks, such as this,
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that include interactions between differentially expressed genes and their non-
differentially expressed interacting partners, one has the potential to identify
key regulators of gene expression, even though these regulators themselves may
not be differentially expressed but may be regulated at the post-transcriptional
level.

For a gene list with hundreds of entries, however, this network can consist of
several thousand interactions (Fig. 22.10). For this reason, with large gene lists it is
often preferable to first create a more focused network in which only interactions
between the genes in the uploaded gene list will be shown (for example, differ-
entially expressed genes only). This filtering – Only show interactions between
uploaded molecules – is demonstrated below. The third filtering option, Filter for
interactions in pathway, provides an even more focused view, allowing one to
display only those interactions that comprise a given pathway.

1. Select Only show interactions between uploaded molecules and execute the
search for interactions between uploaded molecules. As in our earlier analyses,

Fig. 22.10 Network of interactions between differentially expressed genes (and their encoded
products) at day 3 and/or day 4 and all known interacting partners in InnateDB. The network was
displayed in Cytoscape using the Cerebral plugin launched from InnateDB. Nodes encoded by
up-regulated genes are shown in red, down-regulated in green. Analysis of this network enables
the identification of central regulators (hubs/bottlenecks that are not necessarily regulated at the
transcriptional level)
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the search returns its results in a table format which can be edited, sorted and/or
downloaded.

2. To visualize these retrieved interactions, click on the Cerebral button at the
top of the page. A Cerebral view is launched in Cytoscape showing all of the
interactions (Fig. 22.11).

Fig. 22.11 A network of molecular interactions only between genes (and their encoded products)
which were differentially expressed at day 3 and/or day 4. Interactions involving molecules that
were not differentially expressed are not shown. The network was displayed in Cytoscape using the
Cerebral plugin. Up-regulated genes at day 3 are shown in red and down-regulated genes in green.
Un-shaded nodes were not differentially regulated at day 3. This network is useful to investigate
molecular interactions between molecules encoded by differentially expressed genes

3. In this interaction-based analysis, it is often worthwhile to lay the data out in dif-
ferent formats for an alternative perspective, particularly when several hundred
interactions are displayed. In the Cytoscape Control Panel, select the Network
tab. The name of the network – a string of numbers automatically generated by
InnateDB – will appear highlighted in green. Right-click this name and select
Destroy View, then right-click the name again and select Create View. This will
redraw the network in Cytoscape’s default grid format.



22 Systems-Level Analyses of the Mammalian Innate Immune Response 555

Fig. 22.12 An alternative layout of the network in Fig. 22.11. In this view, we have used one of
Cytoscape’s native layouts to visualize the relationships between the genes in our list, as the net-
work structure is more apparent with this layout than with the Cerebral layout. The larger network
shows all of the interactions between our genes of interest colored according to their expression
level on day 4, while the inset view shows a network of transcriptional regulators extracted from
the larger network. This type of analysis, which does not rely on pre-existing information such as
GO or pathway annotation, can reveal novel processes, functions, or complexes active in a data set

4. From the Cytoscape Layout menu, select yFiles > Organic or any of the other
available layout options. This will redraw the network in an alternative manner
(Fig. 22.12).

At this point, you may wish to analyze the network using other tools and
approaches that are presented in this book. To do this one may export the network
and its attributes in a number of formats. From Cytoscape select File > Export.
By examining the relationships between the nodes of the network, new insight into
particular processes or protein complexes can be gained. As an example, the inset of
Fig. 22.12 shows a network of transcription regulators extracted from the larger net-
work in Fig. 22.12 and colored according to their expression at day 4. A number of
transcription factors not identified through GO or pathway analysis are observed to
be active, and the user may wish to follow up on this analysis by examining whether
genes regulated by these transcription factors are enriched at subsequent time points
in the experiment.
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22.5 Conclusions and Future Directions

Systems biology approaches to investigating the innate immune response are begin-
ning to provide novel insight and new understanding of the early host response to
infectious disease. As we have shown, InnateDB greatly facilitates the interpretation
of large-scale -omics data by allowing users to carry out a range of analyses on their
data with just a few clicks of the mouse (Lynn et al. 2008). Uploading of data is
simple, requiring only a spreadsheet containing the genes of interest, and from the
Data Analysis page users can access tools ranging from network construction and
visualization to powerful over-representation analyses. Display options customiza-
tion and multiple download formats enable users to retrieve and store their data in
the format of their choice, while visualizations through the Cytoscape/Cerebral tools
(Shannon et al. 2003; Barsky et al. 2007; Barsky et al. 2008) allow for more intuitive
approaches for analyzing data. Thus, in only a few steps a user can begin to interpret
a gene list and generate specific testable biological hypotheses for follow-up.

Many challenges, however, remain. Despite the large number of interactions
currently annotated in InnateDB and other databases, it is estimated that only
approximately 15% of the human interactome is currently known (Bader et al.
2008). In addition, almost all of these interactions are protein–protein interactions
with only a small fraction of potential transcription factor-DNA interactions cur-
rently experimentally validated and even fewer RNA interactions currently known.
Fortunately, ChIP-chip methods are now enabling large-sale identification of tran-
scription factor-DNA interactions (Ramsey et al. 2008) and new array platforms are
allowing genome-wide profiling of microRNA expression.

Currently, however, the incomplete nature of the networks used for systems
biology-oriented analyses undoubtedly means that important connections between
signaling proteins and pathways are being missed. InnateDB curation efforts,
whereby we have curated nearly 13,000 interactions of relevance to innate immu-
nity, have assisted in providing a more complete picture of the innate immunity
interactome based on data available in the biomedical literature. Large-scale inter-
actome mapping efforts are essential however, to ensure that novel molecular
interactions continue to be described to fill in the missing gaps in the interactome.

Another important issue moving forward is that although we are becoming closer
to determining the entire human interactome, the interactome is not a static entity.
The interactions that occur at any given time depend on the genes being expressed,
post-translational modifications, the cell type or tissue type, exogenous and endoge-
nous stimuli and the particular conditions being investigated. The interactome is
thus a dynamic entity changing over time. Fortunately, gene and protein array tech-
nologies can assist us in determining which particular networks of interactions are
likely most relevant to a given response, by providing quantitative data that can be
analyzed and interpreted in the framework of the interactome. More detailed investi-
gation and annotation of the context of particular interactions, such as the cell type in
which they occur, will greatly help in moving from a static view of the interactome.

Better appreciation and understanding of host–pathogen interactions also needs
to be accounted for in systems-based approaches. The host responses to disease
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and the signaling networks involved can be actively manipulated by pathogens. For
example, live (but not dead) Mycobacterium tuberculosis interfere with signaling in
macrophages (Ehrt et al. 2001), while several viruses produce microRNAs to specif-
ically modulate the host response by suppressing components of the innate immune
response to inhibit apoptosis and promote virus latency (Pedersen and David 2008).
Similarly, host factors influence the pathogens; interferon-gamma expressed by the
host, for example, is sensed by Pseudomonas aeruginosa and causes expression
of virulence factors (Wu et al. 2005). Several new databases that specialize in
host–pathogen interactions provide valuable supplemental information to InnateDB
including the VirusMINT (mint.bio.uniroma2.it/virusmint/) (Chatr-aryamontri et al.
2009) and Pathogen Interaction Gateway (PIG, molvis.vbi.vt.edu/pig) (Driscoll
et al. 2009).

Despite these and many other challenges, systems biology approaches are already
providing significant new insight into innate immunity (see for review Gardy et al.
2009) and promise a far deeper understanding of our first line of defense against
invading pathogens than previously possible.
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