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I. INTRODUCTION

It has been often observed that no new classes of antibiotics have been developed since
the introduction of the first quinoline, nalidixic acid, in 1962. However, over the past

decade scientists have discovered that one of nature's most persistent approaches against

bacteria involves cationic peptides. For example, cationic peptides are the major mecha-
nism ofdefense against microbes in insecs and plants, a predominant local defense at host
surfaces including theskins of amphibians and mucoia of mammals, and the major pro-

teinaceous species of the dedicated antimicrobialdeferue cells of mammals-namely, neu-

trophils. These peptides have a variety of structures and functions that include antibacte-
riai (Gram-positive and -negative), antifungal, antiviral, antiendotoxin, and anticancer
activities. Thus, they present perhaps the most profound example of convergent evolu-
tion, in which a variety of different peptides have evolved to a common set of functions.

Cationic peptides were traditionally isolated from natural sources or synthesized by

solid phase or solution phase chemistry. Moreover, they have recently been synthesized

by recombinant DNA methods in bacteria (1), insect cells (2), and plants (3,4)' The fact
that cationic peptides are produced naturally by certain bacteria (e.g., see Chapter 17), as

well as the newly discovered ability to synthesize virtually any peptide by recombinant
means in bacteria (1), clearly merits the use of the term "antibiotic" for these compounds.

Thus, cationic peptides represent not only the first new class of antibiotic in the past 30

years, but the world's 6nt genetically engineering antibacterials.

II. OCCURRENCE d CATIONIC PEPTIDES IN NATUN"E

Recently, we reviewed the natural cationic peptides in depth and identified 145 sequences

that have been isolated from nature (5). Some of these are listed according to structural

class in Thbles 1 and 2. Cationic peptides are ubiquitous in nature; they have been iden-

tified in bacteria, fungi, planS, insects, crustaceans, amphibians, mammals, and humans.

47r
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Table I Examples of Cationic Peptides

Mammalian defensins (NP-l )
p-Defensins (BNBD5)
Insect defensins (Sapecin)

Tachyplesins (Tachyplesin)

Thionins (Rabbitwod)

Inps (Bactenicin)
o-Helical (Cecropin A)
Histidine-rich (Histadin 2)

Tryptophan-rich ( Indolicidin)
Proline-rich (Bac 5)

WCACRRALCLPRERRAGFCR T RGR T HPLCCRR
E\ IRNPQSCRWNMGVCr p r SCPGNMRQrGTCFGPRVPCCR

ATC DLLSGTG I NH SACAAHCLCRGNRGGYCNGKAVCVCRI{
RRWCFRVCYRGFCYRKCR

KS C CRNTVOARNC YNVCR T PGT T S RE I CAKKC DC K I I S E TTC P S -
DYPK

RLCRT\/tIIRVCR
KWKFKK I E KI,TGRN I RDG I \IKAGPAT EV T G SAKA I
II{KFFVAL U,ATMLSMTGADS HAKRH HGYKRKFHE KHH S HRGY -

RSNYLYDN

TLPWKWPWWPWRR

PFRPP T RRPP I RP PFYPPFRPP I RPP I F P P I RP P FRPPLRFP

Generally speaking, these compounds provide relatively nonspecific defenses against
microbes (Table 3). Even those compounds elicited by bacteria are known to function as

bacteriocins that kill other bacteria, presumably as a mechanism of competition for an
ecological niche.

A. Mammals

A variety of peptides are involved in the mammalian oxygen-independent antimicrobial
defense mechanism. Defensins are a family of small (29-35 amino acids) arginine- and
cysteine-rich peptides that have been isolated from a variety of mammals, including rats,
rabbits, and humans.(6,7). Six human defensins have been identified, four of which,
human neutrophil peptides (HNP-1,2,3,4), were purified from polymorphonuclear leuko-
cytes and two of which, human defensins (HD-5 and 6), have been,detected in the
intestinal Paneth cells by in siru hybridization. Mouse defensing cryptidins, are also found
in the Paneth cells of the small intestine. All six human defensins rLr" r"qu*.. homol-
ogy that includes six cysteine residues forming three disulfide bridges. This resuls in a F-
pleated sheet secondary structure. Defensins, although capable of killing a wide range of
bacteria, fungi, and viruses, are more active against Gram-positive than Gram-negative
bacteria. In addition to their permeabilization of biological membranes, these peptides
also exhibit chemotactic and endocrine regulatory activities (8).

Human defensins are synthesized as 94- to lOO-amino.acid preprodefensins that
contain a conserved l9-amino-acid Mterminal signal sequence that targets the peptide
to the endoplasmic reticulum. This is followed by an anionic propiece, proposed to bal-
ance the cationic charge of the defensin (9).

A suhet of defensins, the p-defensins, have been isolated from bovine neutrophils
(10). A unique consensus sequence distinguishes these defensins from those described
above, although both contain the characteristic three disulfide bridges. Tiacheal antimi-
crobial peptide (TAP) isolated fiom the bovine respiratory tract also contains the triple
disulfide motif but is specifically expressed in the respiratory tract (11). This peptide is
active against Gram-negative and.positive bacteria and yeast.

A distinct family of peptides, termed the cathelicidiru, has been isolated from mam-
malian neutrophils; these include the bovine peptides bactenecin 5 (Bac5) (12) and
indolicidin (13), the porcine PR-39 (14), and the rabbit peptide cAPl8 (15). These
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Figure I Alignment of Bac5, indolicidin, and.cAPl8 proregion *qu".r"... Sequence variarionfrom Bac5 is denoted by underlining in the indolicidin and CApil frJl*.,".r. cleaved antimi-crobial domains are indicated uy u"ta lettering. (Reproduced u, *rlr*-t-, of Zanetti et ar. (16).)

peptides contain 
" 
holrt.*T:ry:{ o:oi*e that is-also homologous to the cysteine-rich

protease inhibitor cathelin (16,17). The antimicrobial MtermilJ region of these pro-fo1m1ryleaved by elastase- An alignment of the d.dulJ pt"i.t*.rnac5, indolicidin,
and CAP18 is presented in Figure l.

B. Amphibians

Frog skin an{ fros s.asfic mucosa are rich in peptides, and many of thern have antimicro-
bial activity (18,19). one of the first antimicrlbial peptides to 6. iroLt a il;l;;;;
was bombinin from the species of frog Bombilwvmiegan(zoy. 16o and subneque;,tl;:
lated, related bombinins display a hign level of ant-ibacierial 

""ri"i,v againsr staphylo-
cocci (21).

. . I family of amphigathic a-helical peptides, the magainiru, has been identified inthe African clawed ftoe (xercptts I*6 bil. uagainin rrl 
" 

fr""J onge of antimicro-
bial activity against c."*-p*iii"e arrd bram-negative bacteria (z3-zs),fungi (24), andprotozoa (23,24).

- These peptides have been well characterized, and the analysis of many synthetic
anafgqs !s leveloped an undenlllding of the components required r"t u"r.gi""i".ri"-
ity (22,26)' The cloningof the-cDNA for magainin and other related amphibian peptides(PGLa, PGo, and xenopsiny has reveared tiat-afl *. prJu"J""]rourro, morecules,the signal peptides of which share considerabre homotqgv eii,iiJo\.

Cationic peptides have also been isolated !o* otlo,p."i* 
"ifrogr. 

For example,cationic peptides termed brevinins have been isolated t omrttwurevqaaurdRorw ir',-lenta-brevinin- 1 and brevinin- I E, respectivery (3 l,3z). m*. z+-*ino-acid peptidesboth possess single c-terminal disulfide bond13$ i*o proti.ro. AL, dermaseptin hasbeen isolated from the south American frog pfuilonedia-"*.-tno peptide has nohgyolosr with other amphibian peptides, b"ut d-ue a i" 
"*pnii"ir,L ,,"rur", it perme-

abilizes membranes in a similar fas-hion (19).

C. Insects

upon infection, insects can produce a wide range of antimicrobial peptides, which aresynthesized in the fat body and/ot haemocytes and secreted into theiaemolymph. Suchpeptides include cecroDins (33), and defensin'like p"prid.s rulh i t"p".r" and phormicin(34,35)' cecropins are highly amphipathic peptides tontaining : rS.oiaues that form

,tf],:,t:-_O.ryndent 
channels in lipid me-brar,", (36). They were initially isolated fromure srrK motn H\alabhoru ceoopia (37) and have subsequently been isolated from the fleshfly (sarcotoxi" ti 

".ti Drosopl"ia(38,39). Cecropins are distinct &om other insect cationicpeptides in that they contain no cysteine resiJues and fail to lyr".ut".yo,i. cells (33),

\/
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Table 2 stmctural classes of carionic Peprides

Class of peptide Structural motifs Sources Examples

Mammalian
defensins

p-defensins

Insect defensins

Thchyplesins

Thionins

g-Helical

loops

Hisddine-rich

Tryptophan-rich

Proline-rich

3 p-strands

3 disulfides

3 disulfides
p-stranded

3 disulfides
2 p-srands
1 a-helix

2 disulfides
2 p-smands

3 disulfides
structure unknown

amphipathic c-helix

1 disulfide
structures unknown

structures unknown

poly-L-proline II

poly-L-proline II

Rat, rabbit, guinea pig,
human neutrophils,
rabbit alveolar
macrophages, human,
mouse Paneth cells

Bovine neutrophils,
rachea

Dragonfln blowfly, flesh
fly

Pig leukocytes, crabs,

amaranth plants,
maize, ,rpip

Maize, radish,

rabbitwood, barley
lead, rape, crambe

Fruit fly, bees, frogs,
toads, cattle

Bovine neurrophils, pit
viper

Primates, humans

Bovine neutrophils

Fruit fly, honey bee,

bovine neutrophils

MCB NB HNP, GNCB
rat NB cryptidins

TAB BNBD

Phormicin, sapecin,
sarcotoxin, royalisin

Protegrins,
polyphemusins,
tachlplesins, Ac-
AMP, 1AFP2,
MB[P-1

Mj-AIrtPl, rionin,
crambin

Bombolitin, bombinin,
cecropins, magainins,
melinin, dermaseptin

Bactenicin, toxin L

Histadins

Indolicidin

Dosocin, abaecin,
apidaecin, Bac 5, BacT

Sapaecin, an ins,
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although they retain activity against Gram-negative and -positive bacteria in micromolar
concentrations (37). Interestingly, cecropin.like peptides have now been isolated from
the pig intestine (40). This latter peptide, cecropin Pl, however, differs from the insect
forms by not containing an amidated C-terminus and also in its tertiary structure (41).

Defensins have also been isolated from a variety of insect species (34,35). They
share an array of six cysteine residues resultiqg in a tertiary structure containing three
disulfide bridges but forming a structure that is distinct from mammalian aefensins (42).
These peptides instead share amino acid sequence homology and tertiary s6ucture homol.
ogy with royalisin from bees and charybdotoxin and defensin from scorpions (4345).
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Sapaecin, an insect defensin isolated from the llesh fly Sacroplwgaperegrha, consiss of 40
amino acids including the conserved six cysteine residues (46) and is most active against
Gram-positive bacteria (35).

A number of well-characterized novel antimicrobial peptides have been isolated
from the honeybee (Apk melkfera). These include abaecin (42), the apidaecins (4g), and
hymenoptaecin (49). The apidaecins are a family of small (18 residues) proline-rich pep-
tides, isolated from the haemolymph of the honeybee, which have activity against Gram,
negative and plant-associated bacteria (48). Apidaecin precursors consist of cassettes of
tandemly repeated sequences of the mature peptide preceded by dipeptides that are cleaved
to produce the mature peptide (50). These precureors retain antibacterial activity, although
the increasing dipeptide content reduces activity. Abaecin is a 34-amino-acid pioline-rilh
peptide that has sequence homology with the apidaecins but has a different antibacterial
spectrum and a delayed antibacterial effect (47). Hymenopraecin, larger than the other
bee-derived peptides at 93 residues, does not contain a high proline content nor the char-
acteristic cysteine residues of defensins (49). This pepride has been shown ro be active
against the inner and ourer membranes of Gram-negative bacteria (49).

D. Crustaceans

Thchyplesins (I, II, and III) are a class of antimicrobial peptides produced in the haemo-
cytes of the horseshoe crabs Tachypbus tridentnats, Taclrypleus gigas, and Carchwscorpitrs
rotutdicauda (51-53). Two tachyplesin analogs, polyphemusin I and Il, have also been
isolated from the horseshoe crab limuhw polyplwrns (52). Thchyplesins ( I ? amino acids)
and polyphemusins (18 amino acids) contain four cysteine residues and subsequently
form a rigid structure containing two disulfide linkages, which results in a stable ,t-.t.rr.
resistant to low pH and high temperature (51). These peptides have activity against
Gram-negative and -positive bacreria and fungi (51).

E.' Microbes

Bacterial antibiotic proteins have been studied for many years since their initial discov-
ery in the 1920s. Common among Gram-negative bacteria are the colicins; rarer are the
peptide bacteriocins such as microcin B17. Among Gram-positive bacteria, peptide bac-
teriocins are the most commonly isolated. Of these, the cationic tpe A antibiotics such
as nisin (54) and Pep 5 (55) isolated ftomi'ac:occr;ars hctis and StcphSrlococcra epidcr-
midis, respectively, are the most characterized. These peptides contain such unusual
amino acids as lanthionine, 3.methyllanrhionine, and dehydrobutyrine (55,56). The
mode of action of these peptides is by the formation of transient volage-dependent pores
in the cytoplasmic membrane (57,58). Such activity causes ion leakage from the cell and
a breakdown in the electropotential across the cell membrane, resulting in death. Fungi,
such as RhiTunucar pusilhs, have also been shown to produce antibacterial peptides. R.
ptsillus produces sillucin, a defensin-like peptide active against Gram-positive bacteria
(59,). .

F. Plants

Thionins are specific cationic peptides produced by plants in response to infection. Fqr
example, barley produces a lgaf-specific thionin, BTH6 (60). In addition, other cysteine-
rich basic peptides belonging to the superfamily of peptides that includes thionins and

\-'l
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mammalian and insect defensins have been isolated from the seeds of plants. These con-taln generally'between 30 and 50 amino acids and between four and eight cystein" ,"rid*r.
Examples of such peptides include Ac-AMp (61) and Mj-AMp (62). plant-derived peo-
tides are most active againsr Gram-positive bacteria and fungi. Icr; i;;".;;;il;;ilr:-
ing.5-0% of fungi) values for Ac:AMp against abroad,p".*r--#rungi are z ," io tt;i,and for Mj-AMP2, 0.5 to 20 pg/mr agaiist 13 plant p"r'n"g."I. r. 

"eiTar,6u.-- 

-- :6"u5

III. ANTIMTCROBIAT ACTIVTTIES

A. Antibacterial Activities

It is a little difiicult to assess the relative activities of cationic peptides compared with
those of other antibacterial agents, for rwo baic ,easorrs. m" n*ii; tn"t ,o*y irr;;;G-
tors working on cationic peptides utilize nonstandard assays. The appropriate method ofmeasuring antibacterial activities is to determine a minimal inhifitory 

"orr..rr,orio'(MIC) by either the broth dilution method, in which 103-104 bacteria are inocularedinto a row of tubes containing serial twofold dilutions of anribiotics (63), or ,lr. 
"g". 

Jiil-tion procedure, which involves incorporation of dilutions of the antibiotic into plates
and subsequent spotting- of 103-104 organisms onto the surfaces of the prates (di:l;
contrast, cationic peptides are often tested by measuring zoneq of .l.".arrc. 

"" pf"r"l
spread with bacteria after inoculation of pepiides into ,n.ll, ..ra into the agar or ontopaper discs (65), or by measuring the concentration of peptide killing 50% of bacteria inkilling assays' The former method suffers from diffusion limitations of peptides, whereasthe latter suffers from an uncertain rglationship to MIC. Furthermore, the activities of
:1i.1:p.prides tend to be reduced in media 

"rhigh 
ionic strength or with nign arr"-

renE catlon concentrations,

. lUith 
-the 

foregoing general commenrs, cationic peptides have just mderate
antibacterial activities compared with those of conventional.antibiotics ('Lbte 4). Ne*,-
;rtheless, cationic peptides do have ceftain highly desirable activities. riit, rt*y ,""Ji"
have- broad-spectmm activity that can encompass both Gram-negative and Gram-posi-
tive bacteria,-although different cationic p"ptido often preferenliaily affect one oiit.other' Second, their activities do not appear to b. 

"o-iromised 
by resistance mecha-

nisms that commonly appear in the clinic. Thus, 
""rnrnon 

resistance mechanisms, such
as methicillin resistance in Staph3llococctss ortreus, intrinsic 

""tiUioti. ,"rlrt;;;;;

Table 3 Roles of Cationic Peptides in Nature
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Pseudomonas amtgirwsa; B-lactam resistance dy11g chromosomal B-lactamase derepres-
sion in Enter&actcr clmcre. or plasmid-encoded TEM p-lactamase in Escherichia.oti, 

"rratetr:rcycline eftlux in E. coli, have no effecr on the Mlc of cationic peptides (66). Fur-
thermote, they themselves do not tend to select resistant mutants, altiiough -,o" l";;;-ria, such as Bwl<holdcria ce@io tend to be naturally resistant.

Despite their modest MICs, cationic peptidescan kill bacteria potently at or arodnd
the MIC, in contrast to most conventional antibiotics. T*, " "."rlfi.,-rn"littin hybrid
peptide can cause 3-4 orders of magnitude of killing of p. aerugircsain 20 min at theMIC, wiereas other potent antipseudomonal antibiotics generally cause less than one
order of magnitude of killing at the analogous concenrration (Figure z).

The detailed mechanism ofaction oicationic peptides is describei in Section IV.C.
The most prominent effect on cells is the formation of channels i" 

"r 
air*piioii"';';;

cytoplasmic membrane. Thus, these molecules appear to kill by a physical method that
takes advantage of the specific composition of bacterial m.-br"rr'.r.';;.;;;;#;;

O lrgllnr
o 2.Eu4/rnL

---o- 5.o WlmL
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Tlme (mtnl

Killing of P reruginosaby the cationic pepride CEME. (From Ref. 67.)
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conventional antibiotics are enzyme inhibitors that act on specific enzyme targets in bac-
teria (e.g., p-lactams acting on transpeptidases). This may explain many of the more
desirable features of the catlonic peptides, as described above,'for example, (a) lack of
resistance development, since it is difficult to fundamentally alter membrane composi-
tion, and (b) rapid killing, since the action is physical rather than catalytic.

Another feature of the mechanism of action that can be exploited is the ability of
cationic peptides to break down the outer membrane barrier of Gram-negative bacteria.
This barrier has been shown to limit the uptake of, and thus cellular susceptibility to,
most conventional antibiotics, since its permeabilization by, for example, EDTA or spe-

cific mutations leads to reduced MIG forsuch antibiotics. In the same way, cationic pep-
tides tend to be synergistic with certain conventional antibiotics, suggesting that they
may be useful in the clinic in combination with such antibiotics. In keeping with these
suggestions, Darveau et al. (68) demonsuated that magainin was synergistic with cef-
pirome in mouse protection experiments. The clinical implications of cationic peptides
as antibiotic and antiendotoxic agents is discussed further in Sections II.B and IV.C.3.

B. Antiendotoxin Activities

Endotoxin is synonymous with lipopolysaccharide (LPS), a complex glycolipid that is an
integral part of the outer membranes of Gram-negative bacteria'(Figure 3). More specifi-
cally, endotoxin is the lipid A portion of LPS, which is the most membrane-proximal
poftion of the LPS making up the outer monolayer of the outer membrane. Endotoxin is
a potent inducer of the cytokines interleukin 1 (ILl), tumor neirosis factor (TNF); and
interleukin I (IL8). The presence of endotoxin in the body leads to a wide variety of
phpiological effects mediated in part by this vigorous cytokine response. These resporues
range ftom beneficial effects, such as fever response and tumor necrosis, to toxic effects,

J-t---

Figure 3 Schematic diagram of the outer membrane of aGram-negative bacreria.
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Gram'negative bacterial blood infections can die even under circumst"rr"e, where antibi-otic tri:atment clears.the infection. It is generally accepted that high 
"rraoto*i. 

t",,r"L
play- an important role in determining lethaliry. otte oi tn. 

"o-piil"ri"g i"",.* i, ,i"tendency of antibiotics ro pronrote Lps rerease borh through ly$ of b"cl*, *a "i"-lytic mechanisms (69). TP:i, is of great interesr to dev.iop either antibiotics that donot enhance the release of Lps or t'eatmenrc that neutraliz" i.t""r.a LPs.
LPS molecules conlain several phosphate moieties in addition ro the unique acidic

octasaccharride, 2-keto-3-deoxyoctanare. Thus, they a,r9 ,trorrgly-.g"tively c'harged, a
charge that is neutralized,in part by divalent carions such as Mgz1ftOz.. .g" doJrib*J
below, such anionic residues are the site of initial interac,i"" .r""ri."n" ;;ft;;;bacterial outer membranes. Indeed, it has been clearly a.-o*tor"a ,h"r'";;;; ;;tides bind to bacterial Lps with.an affinity that is 

"i 
1."r, ,t r." ora"r, or *"grriifi"

higher than the divalent carions (1,?l,ZZ,).Such binding pr"u"rro tfS from interactingwith macrophages to elicit a TNF response both in vi# and in-vivo QL,l3,).Conse-q":Trly' cationic peptides are protective in a mouse endotoxic shock model (z+). rn*,unlike other antibiotics, which promote endotoxin release 
""a "o*"quent 

endotoxic
shock, cationic peptides neutralize endotoxin and prevent."aot*i. rho"k- ----"'-

C. Antifungal Actiyity

Mammalian defensins killCandida ahicanswithin minures in vitro (?5). The action of v
such peptides involves fourdistinct stepo: primary binding, p"rrui"ai"g events,.permeabi-
lization, and secondary binding to intemal macromolecules(?6). Othercationic peptides
haying antifungal activity include the tachyplesins and polyphemusins, which have MIC
values againstc. albicats of 3.1 and 6.3 lt4lmr,respectiveflsz). N* surprisingly, thosep.ptidq isolated nor" pF! havg a broad range of antifungai 

"..iui.y 
apinst p[ni path-

ogenic fungi. For example, Rs-AFp, the antifungat peptiae isotated from odiri r..j, h""
MIC values as low as 0.3 pglml against certain planipathogenic fungi (??). m. jfr"i
peptides Mj-Aup and Ac-AMp cause a delay in growth of the fungal typL"" *irrr.",
*qcTg mycelial morphology, whereas Rs-AFp causes a hlperbranct i"g *a,r".rurrg oi
the hyphae (61,62,?7). However, these peptides show little'or no activity agairut plant,
9se9t' or.human cells- Thionins cause a permeabilization of the ptasmaterima 

"rou"ithe hyphil rrps (?8).

D. Antiviral Actiyity

Several of the defensins have been found to neutralize herpes simplex virus (HSV) in tis-
sue cukure media (?9). For example, rat Np-l (50 pg/mli c"*.j dir.", viral neutraliza-
tion, reducing HSV type I plaque forming units/ml by 90% in 60 min, and >99.9% of
input viral rirer was inactivated within t hr by ?5 pglml guinea pig defensin 

"t 
:z.c taoj]

E. Other Properties

In addition to the killing of the microorganisms described above, certain cationic pe-p-
tides have been associated with the kilting of parasites. Killing of GiardiaaraU no f""r,
demonstrared with indolicidin, cryptidins z and 3, and Np-z (-gt ). th"r" peptides reduced
the viability of the protozoal trophozoites by three ordere of magnitude in ?hr. The bind-
ing and lysis of the cells appears to involve charge interactions, as NaCl, Ca2., and Mg2+
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all inhibited killing. In addition, magainin analogs disrupted the morphological integrity
and motility of several parasites, iniluding Enamoeba histolytca 

"ni 
t"yiro-r 

"rr* 
,";

(82). The latrer was killed by 100 pg/ml of the magainin analog magainin B.
Other properties may exist for cationic peptides within the host. For example,

sapaecin, the insect defensin, has been found to stimulate cell proliferation of Sarcoplr4ga
embryo cells. This perhaps indicates a dual role of antimicrobial agent and developmen-
tal hormone for this peptide in the flesh flV (83). Indeed, Magainin Pharmaceuticals, Inc.,
Plymouth Meeting, PA has claimed to have available cationic peptides that promore
reepithelialization of damaged comeas.

Much work has been carried out on the potential for cationic peptides as anti-
cancer agents. This has been most extensively studied with the magainins. An ovarian
cancer murine model (84) showed the elirnination of 99% of tumor cells after two injec-
tions of a magainin analog. In this study there was only mild damage caused to surround-
ing tissue, which indicates a higher susceptibility of malignant cells to these compounds.

F. lmmunogenicityr, Toxicity, and Stability

There has been no detailed examination of immunogenicity of cationic peptides. How-
ever, the general consensus in the 6eld is that they are weakly immunogenic or nonim-
munogenic. This could be due to clonal deletion duqing divelopment, because of the
importance of peptides in nonspecific host defenses at mucosal surfaces, and their secre-
tion by neutrophils at sites of inflammation, resulting in their recognition as "self" anti-
gens.

Althorrgh many cationic peptides are antimicrobial to some extent, their propen-
sity to be toxic to mammalian cells varies greatly. For example, Schluesener 

"t "t. 
(aS)

foul{ th4 although indolicidin and, to a lesser extent, bactenecin are strongly cytotoxic
to T lymphocytes, the deferuins HNP-I, HNP-Z, and HNP-3 did not affect the prolifera-
tiorl or viability of the T lymphocytes. On the other hand, the cationic peptides melinin
and charyldotoxin are the potent toxiru of bee and rcorpion venom, respectively.

The issue of stability in vivo has not been addressed in detail. Clearly proteases,
which are found in all body fluids, provide the potential for cleavage. One approach to
overcoming such problems has involved synthesis of peptides with all >amino acids;
slch peptides are not protease susceptible and often haveequal acdvity to rhar of the t -
form peptides (see Section IV.B).

IV. BIOCHEMICAT BASIS FOR ANTIBACTERIAT ACTIVITIES

A. Common Themes, Different Structuies

All known cationic peptides share rwo properties: a high proportion of basic amino acids
that are protonated and, thus, positively charged 

"t ".,ttr"l 
pH; arrd a hrgh proportion of

hydrophobic amino acids. Theie tend to distribute themselves through the three-dimen-
sional structure of the peptide so as to create an amphipathic molecule having a
hydrophilicr positively.tt"t!"a face and a hydrophobic face. However, the secondary ind
teftiary folding patterns of such peptides are quite diverse. For this reason, we coruider
the cationic peptides to be one of the finest arguments for convergent evolution, in which
a variety of peptides have converged toward a common function, namely, defense against
microbes.
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The basic amino acids include arginine (pI = ro.8) and lysine (pl = 9.5), which are
p-rotolated and thus positively charged at pHs below their pl'values. In addition, histi-
dine has apl of 7.6, rendering it only partially positively charged ar neurral pH. However,
at acidified sites in the body, including the upper gastrointestinal tract, the interior.oi
phaqoc4ic cell phagolysosomes, or some infection sites, histidine would be strongly posi-
tively charged. Nevertheless, with a few exceptions, histidines are relatively u.Jo-*n
in cationic peptides. In contrast, cationic peptides usually contain four to nine positive
residues that can comprise exclusively arginine (in defensins and thionins) or lysine (in
cecropins or magainins) residues, or a mixture of the two. The acidic amino acids gluta-
mate and aspartate are sometimes found in cationic peptides, but not more than two
residues per peptide. The remaining (uncharged) residues often exclude several amino
lids for a given peptide, Overall nonpolar (hydrophobic) residues usually exceed polar
(hydrophilic) residues by a ratio of 2:1. Despite this high proportion oi hydrophobic
residues, the cationic peptides tend to be soluble in warer, buffer, or acidified 

"qu.ou,solutions due to their ability to fold and aggregate to mask their hydrophobic faces.
Despite their thematic similarities (i.e., their amphipathic narure), cationic pep-

tides offer a range of secondary and terrlary folding patrens. The two *ort prorrourr""d
stmctural classes are the p-stranded and o,-helical classes. The p-stranded class includes
the defensins. The mammalian defensins have been crystallized (HNP-3) and studied by
two-dimensional nuclear magnetic resonanc6 (NMR) techniques (HNp,l, Np-2, Np-5i
with rather similar results. They comprise two antiparillel B-strands with a short stretch
oftriple-stranded p-sheet {Figure 4). The B-strands are connected by short B-tum regions,
and the entire structure is stabilized by three disulfide bridges. Despite some sequence
variations, within a gtven class of defensins the positions of cysteines, the disulfidqbond-
ing pattems, and the pitions of charged residues are strongly conserved. .4.t least three
classes of defensins exist, the mammalian defensins, B-defensins, and insect defensins
(Table 2). Although not structurally well characterized, the plant thionins may make up
another class of defensins. Only one other class has been examined stmcturally, namely,
the insect defensins. These compounds have a different disulfide bonding array than do
the mammalian deGnsirs. The stnrcture of the insect defensin, sapecin, has been defined
by NMR and shown to contain two extended (F-stranded) regioins, a short stretch of 6g-

helix, and a flexible loop (87). However, the stmcturally characterized defensins all retain
the characteristic hydrophobic surface and hydrophilic, positively charged surface. NMR
evidence suggests.that, in solution, defensins dimerize to mask the hydrophobic surface
(8S). It has atso been demonstrated that tachyplesin adopts an amphipathic p-stmcrure,
in this case with two antiparallel p-strands stabilized by two disulfide bridges.

The second maior structural class studied is the cr-helical class. Interestingly, such '

structures tend to be rather disorganized in aqueous solutioni but they become a-helical
structured upon entering a membrane environment or exposure to nonpolar solvents
(89,90). The predominant structures observed upon interaction with membranes are
helix-bend-helix with a9-16 amino acid amphipathic c-helix, a 2-4 residue bend, and
aLl-I4 amino acid amphipathic but more hydrophobic o-helix, as demonsrrated by two.
dimensional NMR of cecropins A and B, melittin, the magainins, and a synthetic
cecropin-melittin hybrid (89,91=93). A small variation is provided by mammalian
cecropin Pl, which comprises an uninterrupted amphiphilic helix for 24 amino acids,
bounded by 24 residues at the N- and C-termini.

Several cationic peptides are rich in proline, and specific peptides within this group
have been demonstrated to adopt a poly-l--proline II helical structure (94-96).In the
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Figure 4 Modgl of the mammalian defensin strucrure. The triple-saanded antiparallel psheer' stmcure of an HNP-3 monomer. The disulfide bonds are *pt;;;; as.,hgltning bolts., chargedresidues are indicated as R = arginine dnd E = gr.o-".". iil.pJ".ed by copyright permirsion ofHill et al. (86). @ American Aiociation io. ,t I edr,"rrce,,,erriif S.i"rr"..)

case of the proline/arginile'rich peptides, bactenecin 5 and pR-39, this stnrcture is irnaf-fected by the preserrci of lipid vesicles 6s,go).H"t"r* ir,t a. case of the proline/tryp-tophan-rich peptide indolicidin, theassumption ojthis specific helical strucrure is greatly'increased in the.presence of negatively cilarged rip"*rr"r-rg+). ott., p"p;f;-i*r'loops due to single disulfide bo"ir, or they h;f;;;it iutrt histidine or tryptophan
, contents (Thble 3). \u(re anticipate that these wilr have 

" ""ri"rv 
of stnrctures.

B. Structurc-Activity Retationships 
:

The influence of substitutions or deletions of specific amino acids on the activity of thecationic peptides hT.E" investigated in detail in several r*aio. Th" fo[o*,irrg pri*i-ples seem toapply: (a) There is coliderabt" rp".ifi"itv --io*',fr. c.hanges in amino acidsequence influence activity (gz,gg). For example, introductio" 
"f " 

d-;r;;ri"g ;"-line at positions 4 or 8 in ih. fi,,t cr-helical rd;";;i;;r;;; had a substantiar effecton activity against Mir:'occr;cns lutcus,lesser effects on activities against Bacillus mega-
tcrium arrd P. aeruginom, and no effect on acdvity against E. coh. F,rrih"r-or., 

".r"r, 
.Jrr-

servative substitutions-(changing selected amino acids ro ones with similar physical prop-

v ;1ies) 
can substantially influenie function. (b) For the c.helical peptides, changes that

increase the tendency to form an g-helix in aqueous solution (i.e.,irior to inte."racting
with membranes) tend to increase activiry (9?:100). (c) There is no clear relationship
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between the numbers of positive charges and activity, and the position of specific positive

charges is important tggi. ta) Enantiomers (i.e., all D-amino acids vs. all ramino acids)

of tie strucrured peptides have equal activity (101), showing that chirality is not inepor-

tanr. (e) Decreased ability of cationic peptides to bind to bacteria or to lyse liposomes

correlates ro some extent with decreased MIC (99). However, this correlation is not

atsolute. For example, one can de"tgn peptides that bind extremely well to Gram'nega-

tive bacteria but have little or no antibiotic activity (66; Hancock REW and Gough M,

unpublished data). Furthennore, it must be noted that some cationic peptides that are

poi"rr, mediators of liposomal lysis are potent toxins but relatively weak antibacterial

"g"r,o. 
(0 For the disulfide-bonded peptides, reduction of the cysteine disulfides destroys

altiviry. (g) Finally, there is no absolute correlation between peptide size and antibacter-

ial potlncy. For example, reduction in size of cecropin-melittin hybrids from 26 to 14

"*irro ""idt 
did not influence activity so long as these compounds maintained an a-heli-

cal stmcture (102).

It must be stressed,.however, that we do not at present have a set of design rules

that will create the perfect peptide antibiotic. For example, although amphipathicity and

cr-helicity favor activity, a perfectly amphipathic ct-helix (Lys-Ala-Ala-Lys-Ala-

Ala-Ala-Lp) was a potent hemolysin.

C. lnteractions with Membranes

The primary mechanism of action of cationic peptides is probably throlgh the generation

of channels in membranes. These can rrange from ordered channels through to so-called

multistate channels. It must be stressed that we do not know in detail the basis for mem-

brane target selectivity. For example, although they both fall into the amphipathic a-
helical cliss, moth cecropins are strongly antibacterial and demonstrate minimal eukary'

otic selectivity (i.e., toxicity), whereas melittin from bee venom is a weak antibacterial

compound bui 
" 

potent toxin. The primary basis for selectivity has been reported to be

the targetlipid composition (see below).

A secondary mechanism of action is a detergenehke effect (103). However, it is
unclear whether this merely represents the cooperative iccumulation of multistate chan-

nels or gross multimerization of cationic peptides in the membrane, and whether this

mechanlm is relevant to bacrerial cell killing, since it has only been demonstrated in

nondefinitive experiments in eukaryotic.cell lines and model liposomes (103). In con-

trast, the lysis of bacteria<ften at concentntions exceeding the MlC--probably arises

fromthe triggering of autolytic enrymes (104). With these caveats, it is worth consider-

ing how cationic peptides interact with membranes'

t. Modelsystems

The process of interaction of the peptides with lipid layers can be modeled as shown in

Figure 5. The peptides initially present in solution as aggregates are present in the form of
dimers (e.g., defensins) (88) and/or conformers (e.g., cecropins are relatively unstruc-

tured in solution). Interaction with the negatively charged head groups of lipids occurs in

a cooperative, rapid process involving progressive binding and alignment of positive

charges of the peptide with lipid head groups (105-107). The extent of binding corre'

rpot dr to the zeta potential of the lipids involved, leading one to conclude that it is elec-

rrostaric in narure (106,10?). Lipid composition is important: binding to liposomes com-

posed of negatively charged lipids is extremely fast, but binding to zwitterionic lipids is

slower and can demonstrate negative cooperativity ( 107).
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Figrrrc 5 Tentative model for the interaction of cecropins with a lipid bilayer membrane. Aggr.-
qates -adsof 

to the bilayer*water interface by electrostatic forces (I). Only a dimer is sketched for
tt-*\. of simplicity, but larger aggregates are likely to occur. The,r.r. *.p (II) would be insenion
of-the hydrophobic segment into the membrane core. Upon application of *1 

"g. 
(positive on the

side of the peptide addition), a major conformational ,."r""rrg.-"rrt takes place (lIIi, which resula
in channel formation. This rearrangement could be insertion of the positively ch"rgJ *phip"rhi.
helix into the membrane or opening of preformed, closed charurelr. R"p*arr."a fy ."pyrigfra [r-mision from Chrisrensen et al. (36). @ The Nadonal Academy of Sciences of the United SLt, *
America.)

It is uncertain whether at this point the permeability of the target lipid membrane
changes'. However, it seems credible that rhe jh.t orr,.rro. of leakinJss (usually 

"rr.rr.Jby carbofluorescein leakage from liposomes) may occur in paft at this stage. Fufthermore,
it is probable that the cationic peptide undergoes a change in conformation and 

"ggr"g"-tion state as a result of this interaction.
The next event is the insertion of the cationic peptide into the membrane. This

occurs at a critical concentration ofpeptide that depends on the nature ofthe peptide
aq{ the target membrane, as well as on the fluidity of the membrane and the .*ir*rr..
and size of the transmembrane electrical potentiai. Although insertion can occur into
membranes with liale or no transmembrane potential, it seems likely that the membrane
potential of living cells (oriented interior negative) is aluap an important factor in pep-
tide irsertion- In addition, it has been demonstrated in planar lipii bihyer model mem-
brane experiments (in which the'membrane potential; is provided as an applied volt-
age) that this potential must be oriented positive on the iis side (where th-e cationic
peptides are added) and negative on the trans side of the memb,rane (towasil which the
cationic peptides move as they enter the membrane). This results in an observable
increase in conductance as the peptides enter the membrane and form channels
(36'94'10&111). Revenal of the voltage actually causes peptides to leave rhe membrane
(36). It is relevant to the issue of toxicity that bacterial cytoplasmic membranes bear
large transmembrane electrical potential gradients, Ay (up to -140 mV), whereas eukary-
otic membranes have gradients of only about -20 mV or less.
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Theprocessofinsertioncausesc\ansSsinphaseand/ormotionofthelipidsofthe
,"rg",*.'ibo". (11;t ii;;;.'"t, ,f" lipid composition can dramaticallv influence the

possibility or ir,r.rtioii ;J;;i""ly charged nhosn]rolini{s and.cholesterol decreased

the formation 
"r -"*ilai. ihannels by cecropin b1 5- to 60jold (36). Indeed' this may

explain, in addition io th" diff"r.rr." in A$, the selectivity of cationic antibacterial pep-

tides for bacteria 
"""J"tf.rw;a"s, 

since the former lack cholesterol' which is abundant in

ffi;;;*U."".r,;t.i.ar'arrionic phosphatidyl glycerol and cardiodipin, major

"o*po*no 
of bacteriai membranes, represenr excellent target lipids.

The process oii*"ii"" can also cause a conformational change in the cationic

peptides (e.g., from u**.*r.a to a.helical), for example, with melittin (113) and mag-

ainins (90,114). I";;;."t.t, .-h" peptides are thought to end up spanning the mem'

brane bilayer t+f ,fOi,iiil in multimeric complexes. Other peptides are too short to span

the bilayer -a prou*"ii' must form aggregates to permit transmembrane channel for-

mation (102,114,115).

Generally rp""i.,rrg, cationic peptides form multistate channels, and planar lipid

bilayer experiments l"*i**," a sutstantial range of channe!-siz9s' with single-channel

conductances t*trLtt tin-."t ,i,.) varying from lgto 2966 pS (94,108-110,116) and life'

dmesrangingfrommillisecondstoseconds(110).Thisbehaviorissimilartothat
observed for alamethici,rliizl, for which it has been proposed that application of a volt-

"g. 
irdu."s alamethicin monomers to span the membrane, and that these monomers

associate and disassociate with various rate constants, leading to aggregates of drtr9r-e1t

sizes and lifetimes. rr"h 
"ggr"g"a" 

contains a variable number of monomers arrayed like

staves of a b",,"t "rJJi "T""'.*t 
axis, and oriented with the hydrophilic portion-of the

monomer facing irr*"rJto"""ta the channel interior and the hydrophobic,face adlagelt

to the memb,"rr" i.rt.rior. Thus, the size of the aggregates-would decree the size of the

channel. firo" .t 
"rrrr"i, "t 

*"a"t 6lled and tend to be weakly selective for chloride over

sodium ions.
In specific instances, for example' the cecropins' the channels formed are more

defiJ (tig). tn,ttlt 
""r.,'rtt 

actual channel forming unit has been modeled at atomic-

level resolution. 1i'l "L"g"*."" 
of six dimers have been proposed to account for the

two discrete "orra"Jo.,*f"l'"*ttt* 
(0'4 and 1'9 nS) reported by Christensen et al'

(36).

2. Bacteriat Cytoplasmic Membranes

As discussed above, cationic peptides can form channels in model bilayers' Thus' it-seems

likely that th"i, prirri"ry *tif".toi"t agtion is to disrupt the integrity of bacterial cyto-

plasmic -"-Ur"r,"r. 
-ilJ*""fa 

have the effect of permitting leakage of ions and small

metabolites, 
"rrd 

d.rt-firrg the ability of bacteria to maintain a transmembrane proton

gradient (protorr-*oti". flt."l with consequent loss of ability to generate adenosine

triphosphate 
"rra 

,oirp"*tufr*,o (see Ref. 119'for review of cytoplasmic membranes)'

Bacteria *"irrt"ir,, across their cytoplasmic membranes, a proton-motive force of

approximately -1?O mV (120), comprising an electrical potential gadienl Ary (oriented

interior negatirr.) af,J a protorr.h"*i.al gradient ApH (oriented interior alkaline)' Tireat'

ment of cells with any of ,.ueral different cationic peptides (e.g., magainins, nisin,.or

Pep5) leads to desrruction of Ary at concentrations approaching the'MIC, as assessed

using the cationic iipia-*f"Uf" probe triphenyl phosphonium (121,122)' Evidence sug-

gests that this d..r"L. of proton.motive force occurs as a sigmoidal function of peptide
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concentration, indicating that peptides act in a cooperative fashion on cytoplasmic mem-
branes (121). Other data favoring the hypothesis that destruction of cytoplasmic mem-
brane integrity is the primary basis of the activity of cationic peptides against bacteria
include the demonstration that mastoporan and melittin cause K* leakage in Cram'posi-
tive bacteria (123).

3. Baeterial Outer Membranes

Only Gram-negative bacteria have outer membranes, and it is clear that the interaction
of an antibiotic with outer membranes cannot directly lead to cell death. However, outbr
membranes are discussed.separately here for two re:rsons. First, the cationic peptides
include molecules that are rare among antibiotics in having better activities against
Gram-negative than Gram-positive bacteria (normally, the influence of the outer mem-
brane on penetration of antibiotics decreases activity). Second, the interaction ofcationic
peptides with the outer membranes of Gram-negative bacteria explains two of the phar-
maceutically interesting properties of these molecules, namely, their 'enhancer" and

Cationic peptides, like other polycationic antibiotics, traverse the outer membrane
using a process termed self-promoted uptake (124); in contrast, small hydrophilic antibi-
otics such as p-lactams diffuse through the water-filled channels of porin proteins (125).
Self.promoted uptake (Figure 6) involves the initial interaction of cationic peptides with
the negatively charged; divalent-cation-bindingsites of the surface glycolipid lipopolysac-
charide (LPS). Since the cationic peptides have an affinity for LPS that is three orders of
magnitude higher than the native divalent cations, Mg2* or 9a2* (70), they competi-
tively displace these cations. This causes a distortion of outer membrane structure that
has been visualized in the electron microscope as induction of outer membrane blebs
(70), and a consequent permeabilization of the membrane to probe molecules, including
lysozyme and the hydrophobic probe 1-N-phenyl-napthylamine (7l,126). By analogy
with other polycations, this distortion of the membrane is proposed to lead to enhanced
ability of the cationic peptide to promote its own uptake (hence the term self-promoted
uptake). The basic features of this uptake system have been demonstrated for interaction
of both the c-helical (66) and p-structured carionic peptides (70).

The ability of cationic peptides to act in synerg,y with certain classical antibiotics
(68) can be explained by their ability to disrupt outer membrane integrity, promoting the
uptake of antibiotics acrdss this barrier. Interestingly, the most potent cationic peptides
do not have this "enhancer" activity for most antibiotics, presumably since they kill cells

Tablc 4 MICs of Selected Cado:ric Peptides Compered wirh Conventional Antibiotics

MICb(pclml)

Gganism CP-29b CP-llcc Gentamicin Ceftazidime Polymynin

Pseudontorltts aen4hwsa
Eschcrichia cok
St4phylococcas aureus

Cundida alhicarc

4
2

T6

32

8

z

8

8

0.3

0.3

2

>64

0.5
0.3

2

>64

0.3

0.1
>64
>64

"MIC values were dctermined by the broth dilution method (63).
bCP.29 h a cecropiry'mellitin hybrid cationic peptide (Hancock, Cowh, and Farmer, unpublished data).
cCP.llc is an extended hetix cationic peptide (Falla, T., Harrcock, R. E. W., unpublished data).

Catlonlr

lttt
PhocPht

figure 6 Schemati<

Mgz* cross-bridges, d

ruption of the outer :

at concentrations t

the situation for t
whereas its deacYla

branes but strongl
(r77).

The antiend
mechanism. Endor

mentioned above,

is of high affinity z

induce TNF in m
mortalitY in.galact

v. PRODUCTTC

A. Natural Sour

As described in St

ery from these sc

extraction with 3'

tate many globula
cedures often inc
However, purifica
purposes, since yi

the recovery of o:

cationic lantibior
nisin by fermenta

' B. Protein Cher

A very convenie
mated peptide sY



Cenonuc PEmpEs 487

ytoplasmic fit€rn-
ytoplasmic rn€rrr-
; against bacteria
ge in Gram-posi-

t the interaction
. However, outer
ationic peptides
ctivities against'the 

outer rn€rrr.
ction of cationic
two of the phar-
tenhancert' 

and

futer membrane
lrophilic antibi-
' proteiru ( 125).
ic peptides with
pid lipopolysac-
s three orders of
, they competi-
e structure that
rembrane blebs
cules, including
:6). By analogy
ad to enhanced
n self-promoted
j for interaction

rical antibiorics
. promoting the
"tionic peprides
e they kill cells

rtibiotics

Polymyxin

0.3

0.1
>64
>64

blished data).
iata).

Catlonlc PePtlde

11 (---J, t F

ffifu1"'Ifu;h*"
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displace rhe Mg2' ions, and cause pernrbation of the lipid bilayer Funher dis'

*i ro* of the o-uter ,,,e,,,bratr" results in uptake of normally excluded compounds.

ar concentrations equal tb their permeabilizing concenrations (66). This is analogous to

the situation for the polycationic antibiotic polymyxin B, which is not an enhancer,

whereas its deacylateddeiivative PMBN (which interacts weakly with cytoplasmic mem-

branes but strongly with outer membranes) is a potent enhancer of antibiotic activity

ltzt).
The antiendotoxin activiry of cationic peptides is also related to the above uptake

mechanism. Endotoxin is in fact LPS, or more precisely the lipid A portion of LPS' As

mentioned above, catioriic peptides bind to polyanionic LPS (70,128,129). The binding

t .f t Ut affinrty *d .*p"Liive (?0). Thirbinding can neutraLle the ability of LPS to

induce-TNF in macrophage cell lines or in a murine model, and it reduces endotoxin

mortality in glactosamine-sensitized mice ( 130,13 1 )'

V. PRODUCTION METHODS

A. Natural Sources

As described in Section II, cationic peptides are very widely disuibuted in nature. Recov-

ery from these sources involves a wide range of methods. One effective procedure is

e*traction with 30% acetic acid, which tends to solubilize cationic peptides and precipi-

&rre many globular proteins. This is usually followed by a variety of chromatographic pro-

ced6res oft1n including reverse phase HPLC or FPLC as the final step in purification'

Ho*"rr"n purification do- r,"tuol sources is rarely a practical altemative for commercial

U"*t*, iince yields tend to be relatively low. For example, a single rabbit will permit

ih"^r".o.r"ry of only 200 mg of rabbit defensins. The one exception is the production of

cationic lantibiotic peptide's such as nisin from bacteria and commercial production of

nisin by fermentation of llrctocrcctts hctis (see Chapter 15)'

B. Protein Chemicat

A very convenient laboratory-scale procedure for making peptides is the r'-qe of auto-

*"t.a'p"ptiae synthesizers using t-bo. or Cmoc chemistry (132)' However, the expense

PhosphollPld
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of reagents and the limitqd capacities of these automated synthesizers has limited the
scale and, thus, the industrial relevance of this method. An alternative is provided by
solution phase chemistry which is, unfortunately, less conductive to automation.

C. Recombinant procedures

One potential advantage of the peptide nature of cationic peptides is their potential abil-ity to be synthesized recombinanrly, since they can be directiy 
"".oa"J[v'or.ld-Til;;are certainly some limitations to this, since nonnatural amino acids (e.g., in the antibi-

otics) and many modifications (e.g., carboxyl-terminal amidationiare difficult ro inrro-
duce recombinantly. As with the protein chemical prbcedures, however, orr. i, ,ror 

-ti--
ited to "natural" cationic peptides.

The first attempt to synthesize cationic peptides recombinantly appears in thepatent literature (133). A sequence encoding cecropin was fused to a poftion of the uraC
gene of E' coli. Although few details were piovided, it is clear that this merhod was not
optimized: although cecropin could be manufactureir ,.corrrbirr"ntly it h"d poo, pot.i.y(i'e', 5 pg of recombinant cecropin gave a clearing zone diameter against E. coli of 5 mm,
whereas 1 pg of authentic-cecropin gBu" 

" 
clearing diameter of ? rn'm). punlr"rrnor", tt upatent claimed that virnrally any firsi9n partner would work to supporr the production of

cecropiru, whereas it is now evident that this is not the case. Subs[uently, it was demon-
strated that cecropin could be synthesized as a fusion with a proteinA-liiie, Igc-;il;;
domain, using baculovirus vector in an insect cell line (2). After affiniry purification of
the firsion protein and cleavage of cecropin from its 

""rri", 
uri"g.yarr,og"n bromide, thececropin could be recovered in its amidated form. The yie-lds *".. 6oo pgilml of

haemolymph, of which ?0% was amidated, indicating tn"t tniun.tt od may b. .Jrt pro-
hibitive given the expense associated with animal cei=l c,rlturq.

- Piers et al. (1) have developed a procedure for the synthesis of cationic peptides in
bacteria. The main feature is inclusion of an anionic staLilizirrg fragment in the fusion
protein to counteract the cationic peptide portion. This anionil fragment could be the
carrier protein itself if the firsion protein was expressed in S. atnew, but for expression inE. coli an extraanionic r.q,r"rr.i equivalent to the prepror"qu"rr"" from theg".r. fo,
human defensin (which sequence stabilizes defensin iuring its frJoi, in human cells;
134) is needed. Additional elements were the inclusion 

"f 
i -.tt io.ine residue immedi-

ately adjacent to the cationic peptide sequence, ro permit ,"-oual ofit 
" 

.".iorri" f.ptia.by.cNBr cleavage, and a carrie, ,.qu.r.. that, when desired, could be tailored to
enhance affinity purification of the resultant fusion The general ,ra,ur" of the ftsion pro-
tein is demonstrated in Figtrre ?. We believe this sptern*offen significant advantages in
the production of cationic peptides. An interesting side note is fiat th" ,u.""*rfui pr*
duction of antibacterial cationic peptides by mJecular genetic means makes these
cationic peptides the first recombinant antibiotics.

VI. AN EXCITING FUTURE

Cationic peptides do not have as potent activities against the most susceptible bacteria as
do other antibiotics. Furthermorg the spectrum of Jationic peptides includes some of the
mostlot€nt toxins (e.g., bee venom and scorpion toxin), so that toxiciry will always be a
closely observed issue. In addition, being peptides, they are potentially susceptible to host
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figure Z Schematic diagram of a pr6tein A<adonic peptide firsion protein. Met represents the

polirio" of ,n" methionine residue used to cleave the pepdde with cyanogen bromide'

peptidasesand proteases, and innovative approaches will have tq be applied to overcome

thir p.obl"n (e.g., the use of ramino acids). However, activity, toxicity, and pharrracol-

ogy are issues wi-th every compound used in medicine'

With these reservations, we believe that cationic peptides offer an exciting future.

They represent a "natural'i solution to infection, since they mimic the anti'infective

defense ,pr.rr6 of several eukaryotes. Their activities cover a far broader spectrum than

do those of other antibiotics. Indeed, they offer the potential for organ'specific therapy

directed against the major bacterial and fungal infections of a given body site- In addi-

tion, the most active caiionic peptides have activities aga.inst some of the more refractory

antibiotic-resistant pathogens (e.g., Pseudanottos qarugirwso and methicillin-resistant

Staphylococoa uz,reus') thai are equivalent to those observed for the antibiotics tailored

for use against those pathogens. Indeed, that they do not seem to induce antibiotic resis-

,"rr.. 
"rid 

are effective 
"giinrt 

most bacteria resistant io conventional antibiotics are

importanr fearures of cationic peptides. In addition, their potential to act q synergy with

conventional antibiotics and to neutralize endotoxin released by these antibiotics makes

them an attractive candidate for use in combination therapy'
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