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Timothy John Falla
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I. INTRODUCTION

It has been often observed that no new classes of antibiotics have been developed since
the introduction of the first quinoline, nalidixic acid, in 1962. However, over the past
decade scientists have discovered that one of nature’s most persistent approaches against
bacteria involves cationic peptides. For example, cationic peptides are the major mecha-
nism of defense against microbes in insects and plants, a predominant local defense at host
surfaces including the skins of amphibians and mucosa of mammals, and the major pro-
teinaceous species of the dedicated antimicrobial defense cells of mammals—namely, neu-
trophils. These peptides have a variety of structures and functions that include antibacte-
rial (Gram-positive and -negative), antifungal, antiviral, antiendotoxin, and anticancer
activities. Thus, they present perhaps the most profound example of convergent evolu-
tion, in which a variety of different peptides have evolved to a common set of functions.

Cationic peptides were traditionally isolated from natural sources or synthesized by
solid phase or solution phase chemistry. Moreover, they have recently been synthesized
by recombinant DNA methods in bacteria (1), insect cells (2), and plants (3,4). The fact
that cationic peptides are produced naturally by certain bacteria (e.g., see Chapter 17), as
well as the newly discovered ability to synthesize virtually any peptide by recombinant
means in bacteria (1), clearly merits the use of the term “antibiotic” for these compounds.
Thus, cationic peptides represent not only the first new class of antibiotic in the past 30
years, but the world’s first genetically engineering antibacterials.

1. OCCURRENCE Oi’ CATIONIC PEPTIDES IN NATURE

Recently, we reviewed the natural cationic peptides in depth and identified 145 sequences
that have been isolated from nature (5). Some of these are listed according to structural
class in Tables 1 and 2. Cationic peptides are ubiquitous in nature; they have been iden-
tified in bacteria, fungi, plants, insects, crustaceans, amphibians, mammals, and humans.
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472 Hancock and Falla

Table I Examples of Cationic Peptides

Mammalian defensins (NP-1) * VVCACRRALCLPRERRAGFCRIRGRIHPLCCRR

B-Defensins (BNBD5) EVVRNPQSCRWNMGVCIPISCPGNMRQIGTCFGPRVPCCR

Insect defensins (Sapecin) ATCDLLSGTGINHSACAAHCLCRGNRGGYCNGKAVCVCRN

Tachyplesins (Tachyplesin) RRWCFRVCYRGFCYRKCR

Thionins (Rabbitwood) KSCCRNTWARNCYNVCRIPGTISREICAKKCDCKIISETTCPS-
DYPK

Loops (Bactenicin) RLCRIVVIRVCR

a-Helical (Cecropin A) KWKFKKIEKMGRNIRDGIVKAGPAIEVIGSAKAI

Histidine-rich (Histadin 2) ==  MKFFVALILALMLSMTGADSHAKRHHGYKRKFHEKHHSHRGY-
RSNYLYDN

Tryptophan-rich (Indolicidin) ILPWKWPWWPWRR

Proline-rich (Bac 5) PFRPPIRRPPIRPPFYPPFRPPIRPPIFPPIRPPFRPPLRFP

Generally speaking, these compounds provide relatively nonspecific defenses against
microbes (Table 3). Even those compounds elicited by bacteria are known to function as
bacteriocins that kill other bacteria, presumably as a mechanism of competition for an
ecological niche. .

A. Mammals

A variety of peptides are involved in the mammalian oxygen-independent antimicrobial
defense mechanism. Defensins are a family of small (29-35 amino acids) arginine- and
cysteine-rich peptides that have been isolated from a variety of mammals, including rats,
rabbits, and humans (6,7). Six human defensins have been identified, four of which,
human neutrophil peptides (HNP-1,2,3,4), were purified from polymorphonuclear leuko-
cytes and two of which, human defensins (HD-5 and 6), have been detected in the
intestinal Paneth cells by in situ hybridization. Mouse defensins, cryptidins, are also found
in the Paneth cells of the small intestine. All six human defensins share sequence homol-
ogy that includes six cysteine residues forming three disulfide bridges. This results in a -
pleated sheet secondary structure. Defensins, although capable of killing a wide range of
bacteria, fungi, and viruses, are more active against Gram-positive than Gram-negative
bacteria. In addition to their permeabilization of biological membranes, these peptides
also exhibit chemotactic and endocrine regulatory activities (8).

Human defensins are synthesized as 94- to 100-amino-acid preprodefensins that
contain a conserved 19-amino-acid N-terminal signal sequence that targets the peptide
to the endoplasmic reticulum. This is followed by an anionic propiece, proposed to bal-
ance the cationic charge of the defensin (9).

A subset of defensins, the B-defensins, have been isolated from bovine neutrophils
(10). A unique consensus sequence distinguishes these defensins from those described
above, although both contain the characteristic three disulfide bridges. Tracheal antimi-
crobial peptide (TAP) isolated from the bovine respiratory tract also contains the triple
disulfide motif but is specifically expressed in the respiratory tract (11). This peptide is
active against Gram-negative and -positive bacteria and yeast.

A distinct family of peptides, termed the cathelicidins, has been isolated from mam-
malian neutrophils; these include the bovine peptides bactenecin 5 (Bac5) (12) and
indolicidin (13), the porcine PR-39 (14), and the rabbit peptide CAP18 (15). These
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Figure I Alignment of Bac5, indolicidin, and CAP18 proregion sequences. Sequence variation
from Bac5 is denoted by underlining in the indolicidin and CAP18 prosequences. Cleaved antimi-
crobial domains are indicated by bold lettering. (Reproduced by permission of Zanetti etal. (16).)

peptides contain a highly conserved propiece that is also homologous to the cysteine-rich
protease inhibitor cathelin (16,17). The antimicrobial N-terminal region of these pro-
forms is cleaved by elastase. An alignment of the deduced proforms of Bac5, indolicidin,
and CAP18 is presented in Figure 1.

B. Amphibians

Frog skin and frog gastric mucosa are rich in peptides, and many of them have antimicro-
bial activity (18,19). One of the first antimicrobial peptides to be isolated from this source
was bombinin from the species of frog Bombina variegata (20). This and subsequently iso-
lated, related bombinins display a high level of antibacterial activity against staphylo-
cocci (21). .

A family of amphipathic o-helical peptides, the magainins, has been identified in
the African clawed frog (Xenopus laevis) ( 22). Magainin has a broad range of antimicro-
bial activity against Gram-positive and Gram-negative bacteria (23-25), fungi (24), and
protozoa (23,24). .

These peptides have been well characterized, and the analysis of many synthetic
analogs has developed an understanding of the components required for biological activ-
ity (22,26). The cloning of the cDNA for magainin and other related amphibian peptides
(PGLa, PGO, and xenopsin) has revealed that all are produced as precursor molecules,
the signal peptides of which share considerable homology (23,27-30).

Cationic peptides have also been isolated from other species of frogs. For example,
cationic peptides termed brevinins have been isolated from Rana brevipoda and Rana escu-
lenta—brevinin-1 and brevinin-1E, respectively (31,32). These 24-amino-acid peptides
both possess single C-terminal disulfide bonds and two prolines. Also, dermaseptin has
been isolated from the South American frog Phyllomedusa sauvagii. This peptide has no
homology with other amphibian peptides, but due to its amphipathic nature, it perme-
abilizes membranes in a similar fashion ( 19).

C. Insects

Upon infection, insects can produce a wide range of antimicrobial peptides, which are
synthesized in the fat body and/or haemocytes and secreted into the haemolymph. Such
peptides include cecropins (33), and defensin-like peptides such as sapecin and phormicin
(34,35). Cecropins are highly amphipathic peptides containing 31-39 residues that form
voltage-dependent channels in lipid membranes (36). They were initially isolated from
the silk moth Hyalophora cecropia (37) and have subsequently been isolated from the flesh
fly (sarcotoxin I) and Drosophila (38,39). Cecropins are distinct from other insect cationic
Peptides in that they contain no cysteine residues and fail to lyse eukaryotic cells (33),
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Table 2 Structural Classes of Cationic Peptides

Class of peptide Structural motifs Sources Examples
Mammalian 3 B-strands Rat, rabbit, guinea pig, MCP, NP, HNP, GNCP,
defensins 3 disulfides human neutrophils, rat NP, cryptidins
rabbit alveolar
macrophages, human,
mouse Paneth cells
B-defensins 3 disulfides Bovine neutrophils, TAP, BNBD
B-stranded trachea
Insect defensins 3 disulfides Dragontfly, blowfly, flesh  Phormicin, sapecin,
2 B-strands fly sarcotoxin, royalisin
1 o-helix
Tachyplesins 2 disulfides Pig leukocytes, crabs, Protegrins,
2 B-strands amaranth plants, polyphemusins,
maize, turnip tachyplesins, Ac-
' AMP, 1AFP2,
MBIP-1
Thionins 3 disulfides Maize, radish, Mj-AMP1, trionin,
structure unknown rabbitwood, barley crambin
lead, rape, crambe
o-Helical amphipathic o-helix  Fruit fly, bees, frogs, Bombolitin, bombinin,
toads, cattle cecropins, magainins,
melittin, dermaseptin
Loops 1 disulfide Bovine neutrophils, pit  Bactenicin, toxin 1 .

Histidine-rich
Tryptophan-rich

Proline-rich

structures unknown
structures unknown
poly-L-proline 11

poly-L-proline 11

viper

Primates, humans

Bovine neutrophils -

Fruit fly, honey bee,
bovine neutrophils

Hi.stadins
Indolicidin

Drosocin, abaecin,
apidaecin, Bac5, Bac7

although they retain activity against Gram-negative and -positive bacteria in micromolar
concentrations (37). Interestingly, cecropin-like peptides have now been isolated from
the pig intestine (40). This latter peptide, cecropin P1, however, differs from the insect
forms by not containing an amidated C-terminus and also in its tertiary structure (41).
Defensins have also been isolated from a variety of insect species (34,35). They
share an array of six cysteine residues resulting in a tertiary structure containing three
disulfide bridges but forming a structure that is distinct from mammalian defensins (42).
These peptides instead share amino acid sequence homology and tertiary structure homol-
ogy with royalisin from bees and charybdotoxin and defensin from scorpions (43-45).
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Sapaecin, an insect defensin isolated from the flesh fly Sacrophaga peregrina, consists of 40
amino acids including the conserved six cysteine residues (46) and is most active against
Gram-positive bacteria (35).

A number of well-characterized novel antimicrobial peptides have been isolated
from the honeybee (Apis mellifera). These include abaecin (47), the apidaecins (48), and
hymenoptaecin (49). The apidaecins are a family of small (18 residues) proline-rich pep-
tides, isolated from the haemolymph of the honeybee, which have activity against Gram-
negative and plant-associated bacteria (48). Apidaecin precursors consist of cassettes of
tandemly repeated sequences of the mature peptide preceded by dipeptides that are cleaved
to produce the mature peptide (50). These precursors retain antibacterial activity, although
the increasing dipeptide content reduces activity. Abaecin is a 34-amino-acid proline-rich
peptide that has sequence homology with the apidaecins but has a different antibacterial
spectrum and a delayed antibacterial effect (47). Hymenoptaecin, larger than the other
bee-derived peptides at 93 residues, does not contain a high proline content nor the char-
acteristic cysteine residues of defensins (49). This peptide has been shown to be active
against the inner and outer membranes of Gram-negative bacteria (49).

D. Crustaceans

Tachyplesins (I, 11, and III) are a class of antimicrobial peptides produced in the haemo-
cytes of the horseshoe crabs Tachypleus tridentatus, Tachypleus gigas, and Carcinoscorpius
rotundicauda (51-53). Two tachyplesin analogs, polyphemusin I and II, have also been
isolated from the horseshoe crab Limulus polyphemus (52). Tachyplesins (17 amino acids)
and polyphemusins (18 amino acids) contain four cysteine residues and subsequently
form a rigid structure containing two disulfide linkages, which results in a stable structure
resistant to low pH and high temperature (51). These peptides have activity against
Gram-negative and -positive bacteria and fungi (51).

E. Microbes

Bacterial antibiotic proteins have been studied for many years since their initial discov-
ery in the 1920s. Common among Gram-negative bacteria are the colicins; rarer are the
peptide bacteriocins such as microcin B17. Among Gram-positive bacteria, peptide bac-
teriocins are the most commonly isolated. Of these, the cationic type A antibiotics such
as nisin (54) and Pep 5 (55) isolated from Lactococcus lactis and Staphylococcus epider-
midis, respectively, are the most characterized. These peptides contain such unusual
amino acids as lanthionine, 3-methyllanthionine, and dehydrobutyrine (55,56). The
mode of action of these peptides is by the formation of transient voltage-dependent pores
in the cytoplasmic membrane (57,58). Such activity causes ion leakage from the cell and
a breakdown in the electropotential across the cell membrane, resulting in death. Fungi,
such as Rhizomucor pusillus, have also been shown to produce antibacterial peptides. R.
pusillus produces sillucin, a defensin-like peptide active against Gram-positive bacteria

(59)..

F. Plants

Thionins are specific cationic peptides produced by plants in response to infection. For
example, barley produces a leaf-specific thionin, BTH6 (60). In addition, other cysteine-
rich basic peptides belonging to the superfamily of peptides that includes thionins and
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mammalian and insect defensins have been isolated from the seeds of plants. These con-

 tain generally between 30 and 50 amino acids and between four and eight cysteine residues.

Examples of such peptides include Ac-AMP (61) and Mj-AMP (62). Plant-derived pep-
tides are most active against Gram-positive bacteria and fungi. ICs, (concentration inhibit-
ing 50% of fungi) values for Ac-AMP against a broad spectrum of fungi are 2 to 10 Ug/ml,
and for Mj-AMP2, 0.5 to 20 pig/ml against 13 plant pathogenic fungi (61,62). ‘

lll. ANTIMICROBIAL ACTIVITIES
A. Antibacterial Activities

It is a little difficult to assess the relative activities of cationic peptides compared with
those of other antibacterial agents, for two basic reasons. The first is that many investiga-
tors working on cationic peptides utilize nonstandard assays. The appropriate method of
measuring antibacterial activities is to determine a minimal inhibitory concentration
(MIC) by either the broth dilution method, in which 103-104 bacteria are inoculated
into a row of tubes containing serial twofold dilutions of antibiotics (63), or the agar dilu-
tion procedure, which involves incorporation of dilutions of the antibiotic into plates
and subsequent spotting of 103—104 organisms onto the surfaces of the plates (64). In
contrast, cationic peptides are often tested by measuring zones, of clearance on plates
spread with bacteria after inoculation of peptides into wells cut into the agar or onto
paper discs (65), or by measuring the concentration of peptide killing 50% of bacteria in
killing assays. The former method suffers from diffusion limitations of peptides, whereas
the latter suffers from an uncertain relationship to MIC. Furthermore, the activities of
cationic peptides tend to be reduced in media of high ionic strength or with high diva-
lent cation concentrations. '

With the foregoing general comments, cationic peptides have just moderate
antibacterial activities compared with those of conventional antibiotics (Table 4). Nev-
ertheless, cationic peptides do have certain highly desirable activities. First, they tend to
have broad-spectrum activity that can encompass both Gram-negative and Gram-posi-
tive bacteria, although different cationic peptides often preferentially affect one or the
other. Second, their activities do not appear to be compromised by resistance mecha-
nisms that commonly appear in the clinic. Thus, common resistance mechanisms, such
as methicillin resistance in Staphylococcus aureus, intrinsic antibiotic resistance in

Table 3 Roles of Cationic Peptides in Nature

. Peptide Host Function Mechanism
Pep5 Straphylococcus epidermidis  Antibacterial Membrane disruption
Rs-AFP Radish seeds Antifungal Cause hyperbranching and
' swelling of hyphae

Cecropins Silk moth Antibacterial Membrane disruption

Tachyplesins Horseshoe crab Antibacterial, antifungal Membrane disruption

Magainins African clawed frog Antibacterial, antifungal, Membrane disruption
antiprotozoal

Defensins Human Antibacterial, antifungal, Membrane disruption
antiviral
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Pseudomonas aeruginosa; B-lactam resistance due to chromosomal B-lactamase derepres-
sion in Enterobacter cloacae or plasmid-encoded TEM P-lactamase in Escherichia coli, and
tetracycline efflux in E. coli, have no effect on the MIC of cationic peptides (66). Fur-
thermore, they themselves do not tend to select resistant mutants, although some bacte-
ria, such as Burkholderia cepacia tend to be naturally resistant. }
Despite their modest MICs, cationic peptides can kill bacteria potently at or around
the MIC, in contrast to most conventional antibiotics. Thus, a cecropin-melittin hybrid
peptide can cause 3—4 orders of magnitude of killing of P. aeruginosa in 20 min at the
MIC, whereas other potent antipseudomonal antibiotics generally cause less than one
order of magnitude of killing at the analogous concentration (Figure 2). _
The detailed mechanism of action of cationic peptides is described in Section IV.C.
The most prominent effect on cells is the formation of channels in or disruptions of the
cytoplasmic membrane. Thus, these molecules appear to kill by a physical method that
takes advantage of the specific composition of bacterial membranes. In contrast, most

Log CFU/mL

2 T U Y
o 20 40 60 . 8

Time (min)

Figuk 2 Killing of P. aeruginosa by the cationic peptide CEME. (From Ref. 67.)
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conventional antibiotics are enzyme inhibitors that act on specific enzyme targets in bac-
teria (e.g., B-lactams acting on transpeptidases). This may explain many of the more
desirable features of the cationic peptides, as described above, for example, (a) lack of
resistance development, since it is difficult to fundamentally alter membrane composi-
tion, and (b) rapid killing, since the action is physical rather than catalytic.

" Another feature of the mechanism of action that can be exploited is the ability of
cationic peptides to break down the outer membrane barrier of Gram-negative bacteria.
This barrier has been shown to limit the uptake of, and thus cellular susceptibility to,
most conventional antibiotics, since its permeabilization by, for example, EDTA or spe-
cific mutations leads to reduced MICs for such antibiotics. In the same way, cationic pep-
tides tend to be synergistic with certain conventional antibiotics, suggesting that they
may be useful in the clinic in combination with such antibiotics. In keeping with these
suggestions, Darveau et al. (68) demonstrated that magainin was synergistic with cef-
pirome in mouse protection experiments. The clinical implications of cationic peptides
as antibiotic and antiendotoxic agents is discussed further in Sections II.B and IV.C.3.

B. Antiendotoxin Activities

Endotoxin is synonymous with lipopolysaccharide (LPS), a complex glycolipid that is an
integral part of the outer membranes of Gram-negative bacteria’ (Figure 3). More specifi-
cally, endotoxin is the lipid A portion of LPS, which is the most membrane-proximal
portion of the LPS making up the outer monolayer of the outer membrane. Endotoxin is
a potent inducer of the cytokines interleukin 1 (IL1), tumor necrosis factor (TNF), and
interleukin 8 (IL8). The presence of endotoxin in the body leads to a wide variety of
physiological effects mediated in part by this vigorous cytokine response. These responses
range from beneficial effects, such as fever response and tumor necrosis, to toxic effects,

Figure 3 Schematic diagram of the outer membrane of a Gram-negative bacteria.
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including toxic or septic shock. It has been observed in the clinic that patients with
Gram-negative bacterial blood infections can die even under circumstances where antibi-
otic treatment clears the infection. It is generally accepted that high endotoxin levels
play an important role in determining lethality. One of the complicating factors is the
tendency of antibiotics to promote LPS release both through lysis of bacteria and non-

" Iytic mechanisms (69). Thus, it is of great interest to develop either antibiotics that do

not enhance the release of LPS or treatments that neutralize released LPS.

LPS molecules contain several phosphate moieties in addition to the unique acidic
octasaccharride, 2-keto-3-deoxyoctanate. Thus, they are strongly negatively charged, a
charge that is neutralized in part by divalent cations such as Mg?+ and Ca2+. As described
below, such anionic residues are the site of initial interaction of cationic peptides with

bacterial outer membranes. Indeed, it has been clearly demonstrated that cationic pep-

tides bind to bacterial LPS with an affinity that is at least three orders of magnitude
higher than the divalent cations (1,71,72). Such binding prevents LPS from interacting
with macrophages to elicit a TNF response both in vitro and in vivo (72,73). Conse-
quently, cationic peptides are protective in a mouse endotoxic shock model (74). Thus,
unlike other antibiotics, which promote endotoxin release and consequent endotoxic
shock, cationic peptides neutralize endotoxin and prevent endotoxic shock.

C. Antifungal Activity

Mammalian defensins kill Candida albicans within minutes in vitro (75). The action of
such peptides involves four distinct steps: primary binding, postbinding events, permeabi-
lization, and secondary binding to internal macromolecules (76). Other cationic peptides
having antifungal activity include the tachyplesins and polyphemusins, which have MIC
values against C. albicans of 3.1 and 6.3 pg/ml, respectively (52). Not surprisingly, those
peptides isolated from plants have a broad range of antifungal activity against plant path-
ogenic fungi. For example, Rs-AFP, the antifungal peptide isolated from radish seed, has
MIC values as low as 0.3 pg/ml against certain plant pathogenic fungi (77). The plant
peptides Mj-AMP and Ac-AMP cause a delay in growth of the fungal hyphae without
changing mycelial morphology, whereas Rs-AFP causes a hyperbranching and swelling of
the hyphae (61,62,77). However, these peptides show little or no activity against plant,
insect, or human cells. Thionins cause a permeabilization of the plasmalemma around

the hyphal tips (78).

D. Antiviral Activity

Several of the defensins have been found to neutralize herpes simplex virus (HSV) in tis-
sue culture media (79). For example, rat NP-1 (50 pg/ml) caused direct viral neutraliza-
tion, reducing HSV type 1 plaque forming units/ml by 90% in 60 min, and >99.9% of
input viral titer was inactivated within 1 hr by 75 pg/ml guinea pig defensin at 37°C (80).

E. Other Properties

In addition to the killing of the microorganisms described above, certain cationic pep-
tides have been associated with the killing of parasites. Killing of Giardia lamblia has been
demonstrated with indolicidin, cryptidins 2 and 3, and NP-2 (81). These peptides reduced
the viability of the protozoal trophozoites by three orders of magnitude in 2 hr. The bind-
ing and lysis of the cells appears to involve charge interactions, as NaCl, Ca?+, and Mg2+
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all inhibited killing. In addition, magainin analogs disrupted the morphological integrity
and motility of several parasites, including Entamoeba histolytca and Trypanosoma cruzi
(82). The latter was killed by 100 ug/ml of the magainin analog magainin B.

Other properties may exist for cationic peptides within the host. For example,
sapaecin, the insect defensin, has been found to stimulate cell proliferation of Sarcophaga
embryo cells. This perhaps indicates a dual role of antimicrobial agent and developmen-

~ tal hormone for this peptide in the flesh fly (83). Indeed, Magainin Pharmaceuticals, Inc.,
Plymouth Meeting, PA has claimed to have available cationic peptides that promote
reepithelialization of damaged corneas.

Much work has been carried out on the potential for cationic peptides as anti-
cancer agents. This has been most extensively studied with the magainins. An ovarian
cancer murine model (84) showed the elimination of 99% of tumor cells after two injec-
tions of a magainin analog. In this study there was only mild damage caused to surround-
ing tissue, which indicates a higher susceptibility of malignant cells to these compounds.

F. Immunogenicity, Toxicity, and Stability

There has been no detailed examination of immunogenicity of cationic peptides. How-
ever, the general consensus in the field is that they are weakly immunogenic or nonim-
munogenic. This could be due to clonal deletion during development, because of the
importance of peptides in nonspecific host defenses at mucosal surfaces, and their secre-
tion by neutrophils at sites of inflammation, resulting in their recognition as “self” anti-
gens.

Although many cationic peptides are antimicrobial to some extent, their propen-
sity to be toxic to mammalian cells varies greatly. For example, Schluesener et al. (85)
found that although indolicidin and, to a lesser extent, bactenecin are strongly cytotoxic
to T lymphocytes, the defensins HNP-1, HNP-2, and HNP-3 did not affect the prolifera-
tion or viability of the T lymphocytes. On the other hand, the cationic peptides melittin
and charyldotoxin are the potent toxins of bee and scorpion venom, respectively.

The issue of stability in vivo has not been addressed in detail. Clearly proteases,
which are found in all body fluids, provide the potential for cleavage. One approach to
overcoming such problems has involved synthesis of peptides with all D-amino acids;
such peptides are not protease susceptible and often have equal activity to that of the L-
form peptides (see Section IV.B).

IV. BIOCHEMICAL BASIS FOR ANTIBACTERIAL ACTIVITIES

A. Commbn Themes, Different Structures

All known cationic peptides share two properties: a high proportion of basic amino acids
that are protonated and, thus, positively charged at neutral pH; and a high proportion of
hydrophobic amino acids. These tend to distribute themselves through the three-dimen-
sional structure of the peptide so as to create an amphipathic molecule having a
hydrophilic, positively charged face and a hydrophobic face. However, the secondary and
tertiary folding patterns of such peptides are quite diverse. For this reason, we consider
the cationic peptides to be one of the finest arguments for convergent evolution, in which

a variety of peptides have converged toward a common function, namely, defense against
microbes.
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The basic amino acids include arginine (plI = 10.8) and lysine (pI = 9.5), which are
protonated and thus positively charged at pHs below their pl values. In addition, histi-
dine has a pl of 7.6, rendering it only partially positively charged at neutral pH. However,
at acidified sites in the body, including the upper gastrointestinal tract, the interior-of
phagocytic cell phagolysosomes, or some infection sites, histidine would be strongly posi-
tively charged. Nevertheless, with a few exceptions, histidines are relatively uncommon
in cationic peptides. In contrast, cationic peptides usually contain four to nine positive
residues that can comprise exclusively arginine (in defensins and thionins) or lysine (in
cecropins or magainins) residues, or a mixture of the two. The acidic amino acids gluta-
mate and aspartate are sometimes found in cationic peptides, but not more than two
residues per peptide. The remaining (uncharged) residues often exclude several amino ,
acids for a given peptide. Overall nonpolar (hydrophobic) residues usually exceed polar
(hydrophilic) residues by a ratio of 2:1. Despite this high proportion of hydrophobic
residues, the cationic peptides tend to be soluble in water, buffer, or acidified aqueous
solutions due to their ability to fold and aggregate to mask their hydrophobic faces.

Despite their thematic similarities (i.e., their amphipathic nature), cationic pep-
tides offer a range of secondary and tertiary folding patterns. The two most pronounced
structural classes are the B-stranded and o-helical classes. The B-stranded class includes
the defensins. The mammalian defensins have been crystallized (HNP-3) and studied by
two-dimensional nuclear magnetic resonance (NMR) techniques (HNP-1, NP-2, NP-5)
with rather similar results. They comprise two antiparallel B-strands with a short stretch
of triple-stranded B-sheet (Figure 4). The B-strands are connected by short B-turn regions,
and the entire structure is stabilized by three disulfide bridges. Despite some sequence
variations, within a given class of defensins the positions of cysteines, the disulfide bond-
ing patterns, and the positions of charged residues are strongly conserved. At least three
classes of defensins exist, the mammalian defensins, B-defensins, and insect defensins
(Table 2). Although not structurally well characterized, the plant thionins may make up
another class of defensins. Only one other class has been examined structurally, namely,
the insect defensins. These compounds have a different disulfide bonding array than do
the mammalian defensins. The structure of the insect defensin, sapecin, has been defined
by NMR and shown to contain two extended (B-stranded) regions, a short stretch of o
helix, and a flexible loop (87). However, the structurally characterized defensins all retain
the characteristic hydrophobic surface and hydrophilic, positively charged surface. NMR
evidence suggests that, in solution, defensins dimerize to mask the hydrophobic surface
(88). It has also been demonstrated that tachyplesin adopts an amphipathic B-structure,
in this case with two antiparallel B-strands stabilized by two disulfide bridges.

The second major structural class studied is the a-helical class. Interestingly, such
structures tend to be rather disorganized in aqueous solution, but they become o-helical
structured upon entering a membrane environment or exposure to nonpolar solvents
(89,90). The predominant structures observed upon interaction with membranes are
helix-bend-helix with a 9-16 amino acid amphipathic o-helix, a 2—4 residue bend, and
a 11-14 amino acid amphipathic but more hydrophobic o-helix, as demonstrated by two-
dimensional NMR of cecropins A and B, melittin, the magainins, and a synthetic
cecropin—melittin hybrid (89,91-93). A small variation is provided by mammalian
cecropin P1, which comprises an uninterrupted amphiphilic helix for 24 amino acids,

bounded by 2—4 residues at the N- and C-termini. _
Several cationic peptides are rich in proline, and specific peptides within this group

" have been demonstrated to adopt a poly-L-proline II helical structure (94-96). In the
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Figure 4 Model of the mammalian defensin structure. The triple-stranded antiparallel B-sheet
structure of an HNP-3 monomer. The disulfide bonds are represented as “lightning bolts.” Charged
residues are indicated as R = arginine and E = glutamate. (Reproduced by cbpyright permission of
Hill et al. (86). © American Association for the Advancement of Science.)

case of the proline/arginine-rich peptides, bactenecin 5 and PR-39, this structure is unaf-
fected by the presence of lipid vesicles (95,96). However, in the case of the proline/tryp-
tophan-rich peptide indolicidin, the assumption of this specific helical structure is greatly
increased in the presence of negatively charged liposomes (94). Other peptides form
loops due to single disulfide bonds, or they have extremely high histidine or tryptophan
contents (Table 3). We anticipate that these will have a variety of structures.

B. Structure-Activity Relationships

The influence of substitutions or deletions of specific amino acids on the activity of the
cationic peptides has been investigated in detail in several studies. The following princi-
ples seem to apply: (a) There is considerable specificity in how the changes in amino acid
sequence influence activity (97,98). For example, introduction of a turn-promoting pro-
line at positions 4 or 8 in the first o-helical segment of cecropins had a substantial effect
on activity against Micrococcus luteus, lesser effects on activities against Bacillus mega-
terium and P. aeruginosa, and no effect on activity against E. coli. Furthermore, even con-
servative substitutions (changing selected amino acids to ones with similar physical prop-
erties) can substantially influence function. (b) For the a-helical peptides, changes that
increase the tendency to form an o-helix in aqueous solution (i.e., prior to interacting
with membranes) tend to increase activity (97-100). (c) There is no clear relationship
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between the numbers of positive charges and activity, and the position of specific positive
charges is important (98). (d) Enantiomers (i.e., all D-amino acids vs. all L-amino acids)
of the structured peptides have equal activity (101), showing that chirality is not impor-
tant. (e) Decreased ability of cationic peptides to bind to bacteria or to lyse liposomes
correlates to some extent with decreased MIC (99). However, this correlation is not
absolute. For example, one can design peptides that bind extremely well to Gram-nega-
tive bacteria but have little or no antibiotic activity (66; Hancock REW and Gough M,
unpublished data). Furthermore, it must be noted that some cationic peptides that are
potent mediators of liposomal lysis are potent toxins but relatively weak antibacterial
agents. (f) For the disulfide-bonded peptides, reduction of the cysteine disulfides destroys
activity. (g) Finally, there is no absolute correlation between peptide size and antibacter-
ial potency. For example, reduction in size of cecropin—-melittin hybrids from 26 to 14
amino acids did not influence activity so long as these compounds maintained an o-heli-
cal structure (102).

It must be stressed, however, that we do not at present have a set of design rules

that will create the perfect peptide antibiotic. For example, although amphipathicity and
a-helicity favor activity, a perfectly amphipathic o-helix (Lys—Ala-Ala-Lys—Ala—
Ala—Ala-Lys) was a potent hemolysin.

C. Interactions with Membranes

The primary mechanism of action of cationic peptides is probably through the generation
of channels in membranes. These can range from ordered channels through to so-called
multistate channels. It must be stressed that we do not know in detail the basis for mem-
brane target selectivity. For example, although they both fall into the amphipathic o-
helical class, moth cecropins are strongly antibacterial and demonstrate minimal eukary-
otic selectivity (i.e., toxicity), whereas melittin from bee venom is a weak antibacterial

compound but a potent toxin. The primary basis for selectivity has been reported to be

the target lipid composition (see below). ;

A secondary mechanism of action is a detergent-like effect (103). However, it is
unclear whether this merely represents the cooperative accumulation of multistate chan-
nels or gross multimerization of cationic peptides in the membrane, and whether this
mechanism is relevant to bacterial cell killing, since it has only been demonstrated in
nondefinitive experiments in eukaryotic.cell lines and model liposomes (103). In con-
trast, the lysis of bacteria—often at concentrations exceeding the MIC—probably arises
from the triggering of autolytic enzymes (104). With these caveats, it is worth consider-
ing how cationic peptides interact with membranes.

I.  Model Systems .

The process of interaction of the peptides with lipid layers can be modeled as shown in
Figure 5. The peptides initially present in solution as aggregates are present in the form of

~ dimers (e.g., defensins) (88) and/or conformers (e.g., cecropins are relatively unstruc-

tured in solution). Interaction with the negatively charged head groups of lipids occurs in
a cooperative, rapid process involving progressive binding and alignment of positive
charges of the peptide with lipid head groups (105-107). The extent of binding corre-
sponds to the zeta potential of the lipids involved, leading one to conclude that it is elec-
trostatic in nature (106,107). Lipid composition is important: binding to liposomes com-
posed of negatively charged lipids is extremely fast, but binding to zwitterionic lipids is
slower and can demonstrate negative cooperativity (107).
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-Figure 5 Tentative model for the interaction of cecropins with a lipid bilayer membrane. Aggre-
gates adsorb to the bilayer-water interface by electrostatic forces (I). Only a dimer is sketched for

the sake of simplicity, but larger aggregates are likely to occur. The next step (II) would be insertion”

of the hydrophobic segment into the membrane core. Upon application of voltage (positive on the
side of the peptide addition), a major conformational rearrangement takes place (III), which results
in channel formation. This rearrangement could be insertion of the positively charged amphipathic
helix into the membrane or opening of preformed, closed channels. (Reproduced by copyright per-
mission from Christensen et al. (36). © The National Academy of Sciences of the United States of
America.)

It is uncertain whether at this point the permeability of the target lipid membrane
changes. However, it seems credible that the phenomenon of leakiness (usually assessed
by carbofluorescein leakage from liposomes) may occur in part at this stage. Furthermore,
it is probable that the cationic peptide undergoes a change in conformation and aggrega-
tion state as a result of this interaction. T :

The next event is the insertion of the cationic peptide into the membrane. This
occurs at a critical concentration of peptide that depends on the nature of the peptide
and the target membrane, as well as on the fluidity of the membrane and the existence
and size of the transmembrane electrical potential. Although insertion can occur into
membranes with little or no transmembrane potential, it seems likely that the membrane
potential of living cells (oriented interior negative) is always an important factor in pep-
tide insertion. In addition, it has been demonstrated in planar lipid bilayer model mem-
brane experiments (in which the “membrane potential” is provided as an applied volt-
age) that this potential must be oriented positive on the cis side (where the cationic
peptides are added) and negative on the trans side of the membrane (toward which the
cationic peptides move as they enter the membrane). This results in an observable
increase in conductance as the peptides enter the membrane and form channels
(36,94,108-111). Reversal of the voltage actually causes peptides to leave the membrane
(36). It is relevant to the issue of toxicity that bacterial cytoplasmic membranes bear

large transmembrane electrical potential gradients, Ay (up to —140 mV), whereas eukary- ‘

otic membranes have gradients of only about =20 mV or less.
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The process of insertion causes changes in phase and/or motion of the lipids of the

target membrane (112). However, the lipid composition can dramatically influence the

possibility of insertion, and positively charged phospholipids and cholesterol decreased
the formation of membrane channels by cecropin by 5- to 60-fold (36). Indeed, this may
explain, in addition to the difference in Ay, the selectivity of cationic antibacterial pep-
tides for bacteria over eukaryotes, since the former lack cholesterol, which is abundant in-
eukaryotic membranes, whereas anionic phosphatidyl glycerol and cardiodipin, major
components of bacterial membranes, represent excellent target lipids.

The process of insertion can also cause a conformational change in the cationic
peptides (e.g., from unstructured to o-helical), for example, with melittin (113) and mag-
ainins (90,114). In many cases, the peptides are thought to end up spanning the mem-
brane bilayer (41,102,113) in multimeric complexes. Other peptides are too short to span

the bilayer and presumably must form aggregates to permit transmembrane channel for-
mation (102,114,115). : :
Generally speaking, cationic peptides form multistate channels, and planar lipid
bilayer experiments demonstrate a substantial range of channel sizes, with single-channel
conductances (which reflect size) varying from 10 to 2000 pS (94,108-110,116) and life-
times ranging from milliseconds to seconds (110). This behavior is similar to that
observed for alamethicin (117), for which it has been proposed that application of a volt-
age induces alamethicin monomers to span the membrane, and that these monomers

" associate and disassociate with various rate constants, leading to aggregates of different

sizes and lifetimes. Each aggregate contains a variable number of monomers arrayed like
staves of a barrel around a central axis, and oriented with the hydrophilic portion of the
monomer facing inward toward the channel interior and the hydrophobic face adjacent
to the membrane interior. Thus, the size of the aggregates would decree the size of the
channel. These channels are water filled and tend to be weakly selective for chloride over
sodium ions. :

In specific instances, for example, the cecropins, the channels formed are more
defined (118). In this case, the actual channel forming unit has been modeled at atomic-
level resolution. Two arrangements of six dimers have been proposed to account for the
two discrete conductance increments (0.4 and 1.9 nS) reported by Christensen et al.

(36).

2. Bacterial Cytoplasmic Membranes

As discussed above, cationic peptides can form channels in model bilayers. Thus, it seems
likely that their primary antibacterial action is to disrupt the integrity of bacterial cyto-
plasmic membranes. This would have the effect of permitting leakage of ions and small
metabolites, and destroying the ability of bacteria to maintain a transmembrane proton

gradient (proton-motive force) with consequent loss of ability to generate adenosine -

triphosphate and transport substrates (see Ref. 119 for review of cytoplasmic membranes).

Bacteria maintain, across their cytoplasmic membranes, a proton-motive force of
approximately —170 mV (120), comprising an electrical potential gradient Ay (oriented
interior negative) and a proton chemical gradient ApH (oriented interior alkaline). Treat-
ment of cells with any of several different cationic peptides (e.g., magainins, nisin, or
Pep5) leads to destruction of Ay at concentrations approaching the-MIC, as assessed
using the cationic lipid-soluble probe triphenyl phosphonium (121,122). Evidence sug-
gests that this decrease of proton-motive force occurs as a sigmoidal function of peptide
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concentration, indicating that peptides act in a cooperative fashion on cytoplasmic mem-
branes (121). Other data favoring the hypothesis that destruction of cytoplasmic mem-
brane integrity is the primary basis of the activity of cationic peptides against bacteria
include the demonstration that mastoporan and melittin cause K+ leakage in Gram-posi-
tive bacteria (123).

3. Bacterial OQuter Membranes

Only Gram-negative bacteria have outer membranes, and it is clear that the interaction
of an antibiotic with outer membranes cannot directly lead to cell death. However, outer
membranes are discussed: separately here for two reasons. First, the cationic peptides
include molecules that are rare among antibiotics in having better activities against
Gram-negative than Gram-positive bacteria (normally, the influence of the outer mem-
brane on penetration of antibiotics decreases activity). Second, the interaction of cationic
peptides with the outer membranes of Gram-negative bactéria explains two of the phar-
maceutically interesting propertles of these molecules, namely, their “enhancer” and
antiendotoxin properties.

Cationic peptides, like other polycationic antibiotics, traverse the outer membrane
using a process termed self-promoted uptake (124); in contrast, small hydrophilic antibi-
otics such as B-lactams diffuse through the water-filled channels of porin proteins (125).
Self-promoted uptake (Figure 6) involves the initial interaction of cationic peptides with

the negatively charged, divalent-cation-binding sites of the surface glycolipid lipopolysac-

charide (LPS). Since the cationic peptides have an affinity for LPS that is three orders of
magnitude higher than the native divalent cations, Mg2+ or Ca2* (70), they competi-
tively displace these cations. This causes a distortion of outer membrane structure that
has been visualized in the electron microscope as induction of outer membrane blebs
(70), and a consequent permeabilization of the membrane to probe molecules, including
lysozyme and the hydrophobic probe 1-N-phenyl-napthylamine (71,126). By analogy
with other polycations, this distortion of the membrane is proposed to lead to enhanced
ability of the cationic peptide to promote its own uptake (hence the term self-promoted
uptake). The basic features of this uptake system have been demonstrated for interaction
of both the o-helical (66) and B-structured cationic peptides (70).

The ability of cationic peptides to act in synergy with certain classical antibiotics
(68) can be explained by their ability to disrupt outer membrane integrity, promoting the
uptake of antibiotics across this barrier. Interestingly, the most potent cationic peptides
do not have this “enhancer” activity for most antibiotics, presumably since they kill cells

Table'4 MICs of Selected Cationic Peptides Compared with Conventional Antibiotics

MIC(pig/ml),
Organism CP-29% CP-11cc  Gentamicin Ceftazidime Polymyiin
Pseudomonas aeruginosa 4 8 03 0.5 03
Escherichia coli 2 2 0.3 0.3 0.1
Staphylococcus aureus 16 8 2 2 >64
Candida albicans 32 8 >64 >64 >64

a MIC values were determined by the broth dilution method (63).
bCP-29 is a cecropin/mellitin hybrid cationic peptide (Hancock, Gough, and Farmer, unpublished data).
¢CP-11c is an extended helix cationic peptide (Falla, T., Hancock, R. E. W., unpublished data).
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Figure 6 Schematic diagram of the self-promoted uptake model. Cationic antibiotics disrupt the
Mg?* cross-bridges, displace the Mg?* ions, and cause perturbation of the lipid bilayer. Further dis-
ruption of the outer membrane results in uptake of normally excluded compounds.

at concentrations equal to their permeabilizing concentrations (66). This is analogous to
the situation for the polycationic antibiotic polymyxin B, which is not an enhancer,
whereas its deacylated derivative PMBN (which interacts weakly with cytoplasmic mem-
branes but strongly with outer membranes) is a potent enhancer of antibiotic activity
(127). ‘

The antiendotoxin activity of cationic peptides is also related to the above uptake
mechanism. Endotoxin is in fact LPS, or more precisely the lipid A portion of LPS. As
mentioned above, catioric peptides bind to polyanionic LPS (70,128,129). The binding
is of high affinity and cooperative (70). This binding can neutralize the ability of LPS to
induce TNF in macrophage cell lines or in a murine model, and it reduces endotoxin

mortality in galactosamine-sensitized mice (130,131).

V. PRODUCTION METHODS

A. Natural Sources

As described in Section II, cationic peptides are very widely distributed in nature. Recov-
ery from these sources involves a wide range of methods. One effective procedure is
extraction with 30% acetic acid, which tends to solubilize cationic peptides and precipi-
tate many globular proteins. This is usually followed by a variety of chromatographic pro-
cedures often including reverse phase HPLC or FPLC as the final step in purification.
However, purification from natural sources is rarely a practical alternative for commercial
purposes, since yields tend to be relatively low. For example, a single rabbit will permit
the recovery of only 200 mg of rabbit defensins. The one exception is the production of
cationic lantibiotic peptides such as nisin from bacteria and commercial production of

nisin by fermentation of Lactococcus lactis (see Chapter 15).

B. Protein Chemical

A very convenient laboratory-scale procedure for making peptides is the use of auto-
mated peptide synthesizers using t-boc or f-moc chemistry (132). However, the expense
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of reagents and the limited capacities of these automated synthesizers has limited the
scale and, thus, the industrial relevance of this method. An alternative is provided by
solution phase chemistry, which is, unfortunately, less conductive to automation.

C. Recombinant Procedures

One potential advantage of the peptide nature of cationic peptides is their potential abil-
ity to be synthesized recombinantly, since they can be directly encoded by DNA. There
are certainly some limitations to this, since nonnatural amino acids (e.g., in the antibi-
otics) and many modifications (e.g., carboxyl-terminal amidation) are difficult to intro-
duce recombinantly. As with the protein chemical procedures, however, one is not lim-
ited to “natural” cationic peptides.

The first attempt to synthesize cationic peptides recombinantly appears in the
patent literature (133). A sequence encoding cecropin was fused to a portion of the araC
gene of E. coli. Although few details were provided, it is clear that this method was not
optimized: although cecropin could be manufactured recombinantly, it had poor potency
(i.e., 5 pg of recombinant cecropin gave a clearing zone diameter against E. coli of 5 mm,
whereas 1 g of authentic cecropin gave a clearing diameter of 7 mm). Furthermore, the
patent claimed that virtually any fusion partner would work to support the production of
cecropins, whereas it is now evident that this is not the case. Subsequently, it was demon-
strated that cecropin could be synthesized as a fusion with a protein A-like, IgG-binding
domain, using baculovirus vector in an insect cell line (2). After affinity purification of
the fusion protein and cleavage of cecropin from its carrier using cyanogen bromide, the
cecropin could be recovered in its amidated form. The yields were 600 pg/ml of
haemolymph, of which 70% was amidated, indicating that this method may be cost pro-
hibitive given the expense associated with animal cell culture.

Piers et al. (1) have developed a procedure for the synthesis of cationic peptides in
bacteria. The main feature is inclusion of an anionic stabilizing fragment in the fusion
protein to counteract the cationic peptide portion. This anionic fragment could be the
carrier protein itself if the fusion protein was expressed in S. aureus, but for expression in
E. coli an extra anionic sequence equivalent to the pre pro sequence from the gene for
human defensin (which sequence stabilizes defensin during its synthesis in human cells;
134) is needed. Additional elements were the inclusion of a methionine residue immedi-
ately adjacent to the cationic peptide sequence, to permit removal of the cationic peptide
by CNBr cleavage, and a carrier sequence that, when desired, could be tailored to
enhance affinity purification of the resultant fusion. The general nature of the fusion pro-
tein is demonstrated in Figure 7. We believe this system offers significant advantages in
the production of cationic peptides. An interesting side note is that the successful pro-
duction of antibacterial cationic peptides by molecular genetic means makes these
cationic peptides the first recombinant antibiotics.

VL. AN EXCITING FUTURE

Cationic peptides do not have as potent activities against the most susceptible bacteria as
do other antibiotics. Furthermore, the spectrum of cationic peptides includes some of the
most potent toxins (e.g., bee venom and scorpion toxin), so that toxicity will always be a
closely observed issue. In addition, being peptides, they are potentially susceptible to host
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Figure 7 Schematic diagram of a protein A—cationic peptide fusion protein. Met represents the
position of the methionine residue used to cleave the peptide with cyanogen bromide.

peptidases and proteases, and innovative approaches will have to be applied to overcome
this problem (e.g., the use of D~amino acids). However, activity, toxicity, and pharmacol-
ogy are issues with every compound used in medicine. ' .

With these reservations, we believe that cationic peptides offer an exciting future.
They represent a “natural” solution to infection, since they mimic the anti-infective
defense systems of several eukaryotes. Their activities cover a far broader spectrum than
do those of other antibiotics. Indeed, they offer the potential for organ-specific therapy
directed against the major bacterial and fungal infections of a given body site. In addi-
tion, the most active cationic peptides have activities against some of the more refractory
antibiotic-resistant pathogens (e.g., Pseudomonas aeruginosa and methicillin-resistant
Staphylococcus aureus) that are equivalent to those observed for the antibiotics tailored
for use against those pathogens. Indeed, that they do not seem to induce antibiotic resis-
tance and are effective against most bacteria resistant to conventional antibiotics are
important features of cationic peptides. In addition, their potential to act in synergy with
conventional antibiotics and to neutralize endotoxin released by these antibiotics makes
them an attractive candidate for use in combination therapy. '
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