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Chapter Four

Function and Structure of

the Major Components of |

the Outer Membrane of N.L. Martin
Gram-Negative Bacteria and R.E.W. Hancock

In this review we have briefly outlined the major functional and
structural aspects of the components of the outer membrane of Gram-
negative bacteria. The functions of the major classes of proteins in the
outer membrane are discussed, as are more general features such as
antibiotic permeation pathways, receptors, protein excretion, and cell
surface interactions. Structural information of a basic nature has been
presented on the major proteins and other constituents of the cell wall.
Included wherever possible are comparisons of the information available
on Brucella with that of other Gram-negative species. We have chosen to
present functional aspects of the Gram-negative cell wall first, leaving the
more recent information concerning the structure of various outer mem-
brane components to the second half of this review. ’

The Typical Gram-Negative Outer Membrane

The Gram-negative outermembrane profile (Figure4-1), derived largely
from studies of Escherichia coli and Salmonella typhimurium, sexrves as a
standard for comparison of other enteric and non-enteric Gram-negative
bacteria. The apolar (hydrophobic) region of the membrane, with a
thickness of 4.5 nm,! provides an anchor for proteins and forms a structural
and functional barrier between the periplasm and the exterior of the cell.
The outer membrane is supported by an underlying layer of peptidogly-
can. Current research suggests the peptidoglycan is a hydrated mesh
approximately three molecular layers thick.? Approximately one-third of
the Braun’s outer membrane lipoprotein in E. coliis covalently attached to
the peptidoglycan and thereby anchors and stabilizes the outer mem-
brane.) However, it is not exposed to the external surface.* The remaining
two-thirds of the Braun’s lipoprotein in the cell is embedded in the outer
membrane, but not covalently attached to the peptidoglycan.

Other outer membrane proteins are noncovalently associated with the
peptidoglycan. One of these proteins, OmpA, also plays arole in stabiliz-
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ated. General porins function as channels to the interior of the cell for the
diffusion of compounds below alimiting molecular weight (the exclusion
limit) and thus determine the molecular seiving function of the outer
membrane. Other porins demonstrate selectivity for specific solutes.
Other proteinaceous components of the outer membrane include pro-
teases,* phospholipase A,” pili/* flagella, and proteins induced under spe-
cific conditions such as the divalent cation-regulated protein, H1, in
Pseudomonas aeruginosa, and the iron-regulated receptors for iron-sid-
erophore complexes.

Twomajorclasses of molecules presentinthe outermembrane, lipopoly-
saccharide (LPS) and phospholipids, are asymmetrically arranged. The
LPS is present only in the external monolayer of the outer membrane and
the majority of lipids are located on the periplasmic side of the outer
membrane bilayer. For enteric bacteria, this arrangement of lipids seems
wise as the bacteria exist in an environment full of bile salts and lipases in
the intestine The phospholipids have only two fatty acid chains con-
nected to polar head groups while LPS has six or seven fatty acid chains
linked to a diglucosamine phosphate backbone." Also, LPS molecules
have many negatively chargeéd groups in the rough core oligosaccharide
and on membrane-proximal sugars such as 3-deoxy-D-manno-octulosonic
acid (KDO) as well as chains of repeating sugar units extending various
lengths into the environment surrounding the cell.»

Function of Outer Membrane Components

Structural Proteins

Two classes of outer membrane proteins have been demonstrated to be
involved in both outer membrane and cell structure and growth in low-
osmolarity media. These are represented in E. coli by Omp A and Braun’s
lipoprotein.i? Loss of both of these proteins confers upon the cell arounded
shape and a growth defect in certain media (without any observable
changes in penicillin-binding protein 2). Either protein will reverse both
properties such that single mutants are rod-shaped and grow well in most
media.® Interestingly, it is the covalently peptidoglycan-associated form
oflipoprotein that appears to be most important for maintaining structural
stability in E. coli. In P. aeruginosa PAOI, the Braun lipoprotein-equiva-
lent is not apparently covalently peptidoglycan-associated and it seems
that cell shape is maintained, at least in part, by OprF. Pseudomonas
aeruginosa PAO1 oprF:W mutants demonstrate rounded morphology and
a growth defect in low-osmolarity media.* This structural role of OprF
andthe fact that OprF and OmpA have substantial homology throughout
their C-terminal halves, cross-react immunologically, and have many
common physical properties,* lends additional support to OprF having
animportantrolein maintaining cell shape and stability. Inaddition, OprF
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Figure 4-1. Schematic Diagram of the Gram-Negative Outer Membrane.
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expressed from the cloned oprF gene will restore elongated morphology to
an E. coli strain devoid of OmpA and Braun lipoprotein.

In the Brucella spp. a peptidoglycan-associated lipoprotein that cross-
reacts im-munologically with Braun lipoprotein has been demonstrated.*
While there have been no specific studies of proteins related to OmpA in
Brucella, it is possible that the group 3 proteins are the OmpA-equivalent
in these species. In addition to P. aeruginosa, both Haemophilus influenza
and Neisseria gonorrhoeae contain proteins that cross-react immunologi-
cally with the E. coli OmpA protein.

Biological & Structural Properties of Brucellae

One other outer membrane protein found in a variety of species is the -

peptidoglycan-associated lipoprotein* equivalent to protein H2 of P.
aeruginosa. The function of this species is unknown.

General Porins

To date, porins have been found in every Gram-negative species in
which they have been sought. The porins are usually identified by their
ability to reconstitute channels in lipid bilayers by one of four reconsti-
tution methods discussed in previous reviews.** Their substantial struc-
tural stability and resistance to detergent denaturation have been ex-
tremely helpful in this regard. However, it must be stressed that these
reconstitution methods are technically difficult. Based on such tech-
niques, there is currently a dispute as to the channel size and nature of the
major porin (OprF) of P. aeruginosa.** The problem may stem in part from
the relatively low outer membrane permeability of P. aeruginosa com-
pared to E. coli. Techniques for the examination of E. coli must be suitably
adjusted to allow them to be applicable to P. aeruginosa. We feel thatsuch
disputes can only be solved by genetic experiments which confirm the
nature of an outermembrane protein as a porin for antibiotics, for example.
Thus, if a defined protein alteration (preferably a point mutation, or small
~ deletion or addition to the gene) can be definitively associated with
antibiotic resistance and/or a loss of in vitro porin activity, and these
properties can be genetically cotransferred to another strain, this would
represent proof of porin function. With the application of sophisticated
molecular genetics to studies of porins, such mutations can be created in
vitro and then recombined into the chromosome.”* However, inthe case of
the OprF protein from P. aeruginosa, transposon or interposon insertion
intothe oprF gene, while causing modest increases in antibiotic resistance,
was not entirely satisfactory due to the substantial effects of the deletion
of OprF on tHe structure*® and non-specific permeability* of P. aerugi-
nosa.

With the above limitations, model membrane studies have allowed one
to build up a very detailed picture of how general porins function.»= They
contain channels which are weakly selective for cations over anions, or
vice versa, due to the presence of charged amino acid residues.” There are
some suggestions that certain porins are voltage regulated,* but these have
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been disputed.»» With respect to Brucella porins (group 2 proteins), the
available evidence suggests that they fitinto the Gram-negative “norm” in
that they are apparently oligomeric, SDS-resistant, peptidoglycan-associ-
ated porins with pore sizes similarto E. co li porins.*¥ Their strong pepti-
doglycan associationand heterogeneous bandingonSDS-PAGErepresent
variations on the general porin theme.

: Specialized Porins :

There are a limited number of known “specialized” porins. These are
proteins which have channels containing specific binding sites for given
molecules (Figure 4-2). The two best-studied cases are the phosphate-
selective protein P (OprP) of P. aeruginosa®»? and the maltose/maltodex-
trin-selective LamB protein of E. coli»* In each case, these channels have
some permeability towards other solutes, but the possession of specific
binding sites allows substantially enhanced uptake at a low substrate
concentration of molecules which bind, compared to molecules that do not
bind (Figure 4-3). Indeed, attheselow, physiologically relevant concentra-
tions the specialized porins are orders of magnitude more effective in the
uptake of their particular substrate than the general porins which possess
substantially larger channels. Important features of the above two chan-
nels are that their production is regulated by their specific substrates and
they are coregulated with a complex transport system.»> ‘

Other specialized porins have been less well studied. Theyinclude the
glucose-selective protein D1 and the imipenem-selective protein D2» of
P. aeruginosa, as well as the nucleoside-selective tsx protein of E. coli.»* In
addition, the iron-regulated outer membrane proteins of E. coli contain
binding sites for specific iron-siderophore complexes, but there is no
definitive data demonstrating that they are porins.»* The NosA protein of
P. stutzeri apparently contains a copper-binding site andis aporin, butthe
porin channel is not copper selective.*

Antibiotic Permeation Pathways

In most Gram-negative bacteria, porins constitute a major permeation
pathway across the outer membrane for hydrophilic antibiotics. The
exclusion limit and activity of the porin channels determine the efficiency
of the porin pathway (also called the hydrophilic pathway). For example,
it has been suggested that P. cepacia is antibiotic resistant due to its low
outer membrane permeability, which is caused by the small size of its
major porin channels” Similarly, the majority of P. aeruginosa protein F
channels are small and presumably impermeable to antibiotics, though a
small percentage (<1%) have been proposed to be large and antibiotic
permeable (but see above and references 6,20,22,and 38 for discussion). In
E. coli the OmpF channel represents the major conduit for p-lactam antibi-
otics.»» However, even in this case considerations such as the frictional
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Figure4-2a & 2b. Schematic Diagram of OprP. A. Showing the phosphate
binding site. The binding site B, as diagramed here, is proposed to consist
of three lysine side chains, one amino acid residue being from each
monomer, which extend into the channel forming a positively charged
cloud shell that would effectively bind HPO2. Thereis a 3-fold symmetry
of the HPO,,- centered around the phosphate atom.?
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Figure4-3. Phosphété Flux as aFunction of the Concentration of Phosphate
for OprP A and PhoE A . The half-saturation constant Ks is 0.30 mM for

OprP.
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interactions between the sides of the OmpF channel and the permeating
B-lactams, as well as the relatively small proportion of total outer mem-
brane surface area that represents porin channels, means that the auter
membrane reduces the rate of passage of p-lactams into the periplasm.m»
Thus, together with secondary defences like periplasmic p-lactamases, the
molecular sieve nature of the outer membrane contributes substantially to
the intrinsic resistance of Gram-negative bacteria to antibiotics.* The
moderate susceptibility of Brucella spp. to hydrophilic antibiotics is con-
sistent with model membrane studies showing similar porin sizes for
Brucella and E, coli” :
There are two other well-defined antibiotic pathways across the outer
membranes of Gram-negative bacteria, the hydrophobic pathway and the
self-promoted uptake pathway.,#4 The hydrophobic uptake pathway
involves the uptake of hydrophobic or amphipathic molecules by direct
passage throughthe outer membrane bilayer. Gram-negative bacterialike
S. typhimurium, E. coli, and P. aeruginosa wild-type strains do not have a
predominant hydrophobic permeation pathway .

Studies with mutants of these bacteria (often LPS-altered) that are
supersusceptible to hydrophobic agents, and with divalent cation chela-
tors or polycations that increase the permeability of wild type strains to
antibiotics, haveindicated that the exclusion of hydrophobic antibiotics is
mediated by the outer membrane in these strains.## It has been suggested
that the outer membrane is stabilized by the strong interaction of LPS (the
major, if not sole, lipidic component of the outer monolayer of the outer
membrane) with itself, via divalent cation crossbridging, and with outer
membrane proteins.*4 In contrast to these above bacteria, however,
several pathogens, including N. gonorrhoeae, N. meningitidis, H. influenzae,
and B. pertussis, have outer membranes which do take up hydrophobic
compounds.’ Symptomatic of a hydrophobic permeation pathway is high
susceptibility to moderately hydrophobic agents including erythromycin
and rifampicin. Based on the high susceptibility of Brucella spp. to these
antibiotics we can assume that Brucella also possesses arelatively efficient
hydrophobic permeation pathway.»

The other well-defined outer membrane permeation pathway is the
self-promoted uptake pathway.*# In this pathway, polycationic agents or
chelators competitively displace or remove divalent cations from sites on
the outer membrane where these divalent cations cross-bridge adjacent
LPSmolecules. The consequent destabilization of the outermembrane has
been proposed to permit the enhanced uptake of the destabilizing com-
pound, hence the name self-promoted uptake. The pathway is utilized by
polycationic antibiotics such as polymyxins and, in some bacteria, amio-
glycosides.#* Polycationic peptides called defensins (which are part of the
non-oxidative killing arsenal of phagocytic cells), and the fluoroqui-
nolone antibiotic fleroxacin also use the pathway.* Self-promoted uptake,
and consequent killing by these agents, canbeinhibited by excess divalent
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cations in the medium, by LPS alterations possibly in negatively charged
phosphate residues, or by induction of an LPS-associated protein which
has been proposed to replace divalent cations in stabilizing outer mem-
branes.“ Also, P. fluorescens cells grown under phosphate-limiting condi-
tions are resistant to polymyxins and produce large amounts of an orni-
thine amine lipid in contrast to P. fluorescens grown in a phosphate-rich
medium.¥

Brucella outer membranes are resistant to the destabilizing effects of
the divalent cation chelator EDTA* and Brucella spp. are also resistant to
the polycation polymyxin B2 Thus, we can assume that Brucella does not
have a self-promoted uptake system. Brucella spp. have been shown to
contain a high content of an ornithine lipid (17 to 32% of total lipid)* and
we propose that this molecule replaces divalent cations as the chief outer
membrane stabilizing agent, thus explaining the resistance of Brucella to
polycationsand EDTA. Since Brucellais afacultativeintracellularparasite
that can survive in phagocytic cells, we assume that this property is
required for Brucella’s resistance to the polycationic peptides and proteins
of neutrophil granules. ‘

In addition to the above, we have recently argued, based on data in
mutants, that there are other potential non-porin pathways.’ The above-
mentioned imipenem-selective protein, D2 of P. aeruginosa, also creates a
precedent for the existence of a selective porin for a given group of
antibiotics. Another group of p-lactams contain catechol groups and are
thought to be taken up and across the outermembrane by iron-siderophore
uptake systems.®

Receptor and Enzymatic Functions
Outer membrane macromolecules, both various proteins and LPS, also
serve as cell surface receptors for adsorption of phages and bacteriocins.’
Since this results in killing of cells, we can assume these are not the normal
physiological functions of these molecules. In addition, outer membrane
molecules are involved in binding of conjugative pili in genetic transfer.®
A class of high molecular weight, iron-regulated, outer membrane proteins
that have been identified in most bacteria examined function as receptors
for iron-siderophore complexes and in subsequent permeation of these
complexes across the outer membrane.? Such proteins are considered
important in pathogenesis since it is generally held that bacteria grow in
vivo under iron-deprived conditions.® Similarly, other outer membrane
proteins in Neisseria sp. and H. influenzae function in binding and subse-
quent removal of iron from iron-loaded transferrin or lactoferrin* The
btuB protein serves as a receptor for vitamin B-12 as part of the vitamin B-
12 uptake pathway of E. coli.s All of these receptors have been reasonably
well characterized with regards to their binding function and in many
cases mutants lacking these proteins have a clearly defined loss of uptake
of the substate that binds to this receptor. However, little is known about
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the actual mechanism of translocation of the substrates across the outer
membrane. Outer membranes have also been shown to contain proteins
withavariety of enzymatic functionsincluding phospholipase A1, esterase,
and proteases.’® '

Role in Protein Excretion

A feature of many Gram-negative bacteria is their ability to excrete a
variety of different proteins, including certain exotoxins, proteases, li-
pases, phospholipases, nucleases, haemolysins, etc, into the external
medium. It was once assumed that such excretion might involve outer
membrane breakdown and release of the enzyme from a periplasmic pool,
but this is now known not to be generally trues* At least four pathways
have been proposed for the mechanism of transit of excreted proteins
across the outer membrane. These include secretion into the periplasm as
a proprotein, followed by proteolytic removal of the “pro” sequence
during passage across the outer membrane, secretion into the periplasmin
a native form followed by release across the outer membrane, excretion of
specific proteins associated with blebs of outer membrane material, and
excretion through Bayer adhesion zones.*

Interaction with Environmental Surfaces

Various cell surface molecules have been described as being involved in
adhesion to environmental surfaces (including adhesion to eukaryotic
cells). Such adhesins include cell surface polysaccharides, fimbriae or pili,
and fibrillar adhesins. However, only recently has there been good
evidence to suggest a presumptive role for outer membrane proteins in
adhesion. This evidence arose from genetic studies of E. coli P fimbriae,
which like other fimbriae or pili, are anchored in the outer membrane. P
fimbriae mediate binding of E. coli to the globoside receptor on epithelial
cells.” It has been demonstrated that the receptor binding ligand for these
fimbriae is not contained on the papA pilin protein that makes up the shaft
of the P fimbriae, but rather is contained on a pair of proteins, papF and
papG, which are usually located at thetip of the fimbriae. Mutants lacking
the fimA protein, which presumably express the papF and papG proteins
on the surface of the outer membrane, are still able to bind to globoside
receptors. Although direct evidence is lacking, this creates a precedent
suggesting t}\at outer membrane proteins may be specifically involved in
binding to environmental surfaces.

Structure of the Components of the Outer Membrane

Structural Proteins
It is interesting to note that predictive models of the E. coli OmpA

-
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protein based upon its primary structure® and mapping of surface exposed
regions” suggest that only the N-terminal portion of this protein is embed-
ded in the membrane.® Searches for similarities between the P. aeruginosa
major outer membrane protein, OprF, and other proteins have found that
the C-terminal half of OprF is very similar to the C-terminal half of OmpA
from E. coli and Enterobacter aerogenes, and the plII protein from N.
gonorrhoeae Itis this C-terminal region of OmpA which is thought not
to be exposed on the surface of, orembedded in the outer membrane.® This
is not true in the case of OprF since molecular genetic manipulation of the
gene has permitted localization of the surface-exposed epitope of mono-
clonal antibody MAS5-8 to the carboxy terminal half of the molecule
(Woodruff, W.A. and R.E.W. Hancock, unpublished data). Interestingly,
comparison of the antigenicindex, whichis calculated by summing several
weighted measures of secondary structure (hydrophilicity, surface proba-
bility, flexibility, and the Chou-Fasman and Robson-Garnier predictive
methods), shows a better correlation between OmpA and OprF in the N-
terminal half of these proteins than in the C-terminal half which is more
closely related at the primary sequencelevel (Figure 4-4). Group 3 proteins
from Brucella, the proposed OmpA equivalent,* do not have any porin .
activity,” but no further studies on this particular group of proteins have
been carried out in order to conclusively determine their structure or
functional properties.

Another protein offering structural stability to the outer membrane, the
Braun'’s lipoprotein, is not essential for growth, but mutants lacking
lipoprotein produce increased amounts of outer membrane vesicles and
release periplasmic enzymes.* A third of the lipoprotein present in the cell
wall is covalently attached to the peptidoglycan through the e-NH, group
of the C-terminal lysine.* The protein portion of the molecule is mostly a-
helical*® and the N-terminal cysteine residue is substituted with a diglyc-
eride on the sulfhydryl group and its a-NH, group is substituted with an
amide linked fatty acid residue.t In Brucella the covalently peptidoglycan
linked lipoprotein has an amino acid composition which is similar to that
of E. coli* and seems to share antigenic epitopes with E. coli lipoprotein.

Porins
General diffusion pores appear to be constitutively expressed, but the
amount of expression seems to vary with the cell’s needs. OmpF haslong
been regarded as the major porin of E. coli, however, expression of the
ompF geneis regulated inresponse to the osmolarity of the medium and is
predominant only under conditions of low osmolarity. Athigh osmolarity
OmpC is predominantly expressed. Recent studies have shown that at
intermediate salt concentrations there are actually OmpF/OmpC heterot-
rimers formed which cannot be distinguished from homotrimers by SDS-
PAGE, but can be separated by anion exchange chromatography.« Consid-
ering the large degree of homology of the amino acids between OmpF and

()
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Figure 4-4. Plot of the Antigenic Index for Proteins OmpA and OprF. Note
the similar peaks and valleys in the first 150 amino acids with much less
similarity in the remaining C-terminal portions of the two proteins.
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OmpC, it seems feasible that the monomers would be interchangeable to
form heterotrimers. This work, along with data which suggests that porin
trimers are assembled via a dimeric intermediate,” suggests that bacterial
cells are capable of “fine tuning” the outer membrane permeability char-
acteristics by structurally altering porin types within the membrane.

A large amount of research has been directed towards establishing a
molecular model for bacterial porins in the past few years. The crystal-
lization of a porin and the concommitant resolution of that crystal structure
will provide eagerly anticipated answers concerning the nature of the pore
within these proteins, but technical problems such as protein purity (i.e.
homogeneity), the need to crystallize in a detergent solution, and the
difficulty of obtaining isomorphous heavy metal derivatives have proven
tobesignificant obstacles. Nevertheless,anumber of alternate techniques
have been utilized to derive informative models of porin structure. Re-
gions of cell surface exposed protein have been extensively mapped by
molecular genetic studies of mutants selected using both antibody tech-
niques and bacteriophages specific for PhoE®# and LamB.»#” In addition,
a series of hybrid genes generated by in vivo recombination between the
phoE and ompC genes were characterized with respect to the binding of
PhoEand OmpC specificbacteriophages and monoclonal antibodies raised
against PhoE.»» For PhoE, the data was consolidated and a model formu-
lated in which eight hydrophilic regions are exposed on the external
surface of the protein. Each of these regions is separated by approximately
forty amino acids. These are stretches of amino acids long enoughto cross
the membrane twice, for a total per PhoE molecule of sixteen transmem-
brane segments.“ The data for LamB suggest a folding model with
eighteen membrane spanning segments.“ These membrane spanning
segments are thought to be arranged in p-pleated sheet conformation in
porin proteins. There are none of the long segments of hydrophobic
residues which have been shown to form membrane spanning a-helices in
other membrane proteins.” The absence of hydrophobic segments could
reflect a necessity for translocation to the outer membrane in Gram-nega-
tive bacteria. MacIntyre et al.” have shown that the addition of a segment
of 16 to 18 hydrophobicresidues inserted between amino acids 153 and 154
of OmpA blocked translocation, leaving this protein anchored in the
cytoplasmic membrane.

Analyses of circular dichroism data on various bacterial porins,””
infrared absorption and high angle x-ray diffraction,” Raman spectroscopy,”
x-ray diffraction,” and Fourier transform infrared linear dichroism,®2 have
all indicated a high content of p-sheet structure in OmpF, LamB, OprP,
OprF,and the N-terminal 177 amino acids of OmpA. A model for the
orientation of these anti-parallel p-pleated sheet structures™ has been
proposed by Nabedryk et al.? They suggest that the porin monomer
consists of at least two B-sheet domains, both with planes perpendicularto
the membrane. The strands of one sheet are lying nearly parallel to the

Membrane Functions of Gram-Negative Bacteria
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~ membranenormal and the strands of the other are inclined at a small angle
away from the membrane plane.

Extensive studies using electron microscopy have also provided agreat -

deal of structural information about porins. Dorset et al.» examined the
structure of OmpF trimers from E. coli by forming two-dimensional
crystals of protein packed into lipid bilayers followed by reconstruction of
optical diffraction patterns. Since the resolution of these experiments was
limited to 2.2 nm, the shape of the transmembrane channels could not be
determined, but they found lattice constants in one crystal form to be
similar to those obtained from three-dimensional crystals.* They also
found that the amount of phospholipid associating with the protein in a
small hexagonal crystal form was comparable to the amount of LPS bound
to membranous sheets generated by SDS extraction of undisassociated
outer membrane from E. coli** indicating that porin packing in two-
dimensional crystals is similar to the arrangement of porin in native outer
membranes. To date, electron microscopy via both optical and electron
diffraction techniques has been used to generate three-dimensional im-
ages from two-dimensional specimens of OmpF, =%+ LamB,* and PhoE*
to a maximum reconstructed resolution of approximately 0.6 nm. At this
resolution it has been reported that there are three channels per trimer on
the external surface of the protein which merge to form one channel at the
periplasmic side for proteins OmpF and LamB, or merge, but do not
converge, in the case of PhoE. It now seems likely that the OmpF channel
arrangement is similarto PhoE (R.M. Garavito, personnel communication)
in that the channels do not actually merge, but rather narrow and bend
closer together at the periplasmic side of the membrane (Figure 4-5). A
similar structural arrangement among the porins of E. coli would be
consistent with their extensive homology at the primary level.

Other methods 'used to determine porin structure include chemical
modification of specific amino acids and analysis of the resulting changes
in solute permeability through the porin. For example, it has been demon-
strated that OprP from P. aeruginosa has a fixed, anion binding site within
the channel*» and that the channel has an effective sieving diameter of
approximately 0.5 - 0.6 nm® (Figure 4-2). Various methods were used to
modify charged groups within the channel and the resulting conductance
was analyzed via blacklipid bilayerstudies. Similarstudies on PhoE from
E. colisuggested that this protein does not have a specific binding site for
phosphate.” These results have been confirmed recently by using PhoE
mutants and black lipid bilayer techniques.” Chemical modification has
also been used to demonstrate that porin channels have constrictions® and
that charged amino acid residues are responsible for the weak ion selectiv-
ity of general diffusion pores.” Modification with bulky reagents such as
trinitrobenezenesulphonate does not alter the exclusion limit of the OprP
channel, whichsuggests that the charged residues responsible for selectiv-
ity are not located in the most constricted part of the channel.”

-
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Figure 4-5. Schematic Diagram of a General Diffusion Porin with Three
Separate Channels.
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The properties of Brucella porins have been studied by Douglas et al”
using liposome swelling assays. They found a range of pore sizes in
different strains of Brucella with B. canis having the largest pores (larger
than OmpF fromE. coli), amiddlerange of pore sizes in several smooth and
rough strains of B. abortus, and the smallest pore sizein B. melitensis group
2 proteins. Except for the B. canis group 2 protein which had a lower
mobility on SDS gels,” all of these proteins run as multiple bands at a
molecular weight. of 37,000-42,000.7 All of these multiple bands give
similar patterns in peptide mapping experiments. Explanations for the
differing mobilities may be the heat modifiability of these proteins or the
possibility of having different amounts of LPS remaining tightly associ-
ated with the proteins and causing them to run at slightly different
positions on SDS gels.* The unusually strong association between protein
and LPS is well documented for both smooth and rough Brucella strains»smss
and seems not to be mediated by divalent cations* asitisin E. coli and other
Gram-negative bacteria. 0

Lipopolysaccharide
In addition to proteins, a major portion of the exterior surface area of the
Gram-negative outer membrane consists of LPS. Most Gram-negative
bacteria, including Brucella, produce both the rough and smooth types of
LPS. Most enteric organisms have LPS structures consisting of similar
lipid A, core oligosaccharides, and O-poly-saccharides, but Brucella LPS
has a very different lipid A structure from that of enteric bacteria!® InE,
coli all of the fatty acid chains attached directly to the disaccharide
backbone of the LPS are 3-OH-tetradecanoic acids (primarily 3-hydrox-
ymyristic acid). There are additional fatty acid residues linked to these 3-
hydroxy groups forming a characteristic 3-acyloxyacyl structure.* Brucella
lipid A contains amide linked, acyloxyacyl residues, 3-O(16:0)12:0, 3-
0(16:0)13:0, 3-O(16:0)14:0, 3-0(18:0)14:0, 3-OH-16:0, and 3-OH-14:0, and an
unusual 2,3-diamino-2,3-dideoxy-D-glucose as a backbone sugar which is
similar to the lipid A of several photosynthetic bacteria.® There seems to.
be no phosphate associated with the core region although there is KDO.

The lack of phosphate is interesting in light of the unusually strong

association between LPS and proteins in Brucella. It is generally thought
that LPS-protein interactions in many other bacteria may be mediated by
charged residues on the LPS molecule.” In addition, the presumed low
phosphate content of Brucella LPS is consistent with the lack of aself-
promoted uptake pathway (see above).

In summary, the outer membrane of the Gram-negative cell wall must
be traversed by every compound entering into or exiting from the bacterial
cell as well as serving as a barrier against potentially harmful compounds.
In this respect, the elements of the outer membrane are both functionally
and structurally specialized. This review discusses the functions of the
major proteins of the outer membrane in the context of permeability,

(
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structural stability, protein excretion, and cell surface interactions. In
order to understand the function of a membrane at a molecular level it is
necessary to know its structure.. To this end, the structure of the major
proteins, lipopolysaccharide, and lipoproteins are briefly discussed. As
most of the information presented here is derived from studies of Escher-
ichia coli and Pseudomonas aeruginosa, the available research on Brucella
spp. is included for comparison wherever possible.
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