
A Systems Biology Approach to the Analysis of Subset-
Specific Responses to Lipopolysaccharide in Dendritic
Cells
David G. Hancock1,2, Elena Shklovskaya1,2, Thomas V. Guy1,2, Reza Falsafi3, Chris D. Fjell3,4,

William Ritchie1, Robert E. W. Hancock3, Barbara Fazekas de St Groth1,2*

1 Centenary Institute of Cancer Medicine and Cell Biology, New South Wales, Australia, 2 The Discipline of Dermatology, University of Sydney, New South Wales, Australia,

3 Centre for Microbial Diseases & Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada, 4 James Hogg Research Centre, University of

British Columbia, St. Paul’s Hospital, Vancouver, British Columbia, Canada

Abstract

Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment,
generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these
different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic
signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent
model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and
respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on
mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation
have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC
subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene
signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-
specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription
factors and major signalling pathways, the subsets showed differential regulation of sets of genes that ‘fine-tune’ the
network Hubs expressed in common. We propose a model in which signalling through common pathway components is
‘fine-tuned’ by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely
related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can
account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.
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Introduction

Dendritic cells (DCs) are key regulators of T cell responses. DCs

are essential for priming naive T cells and are also believed to

control their effector fate. The DC lineage can be subdivided into

multiple distinct subsets, some of which show intrinsic functional

differences that are known to drive distinct immune outcomes [1].

However many subset-specific functional differences remain

poorly understood. Here we have used a global systems approach

to DC function as a means of exploring their distinct in vivo roles

in the immune response.

Advances in systems biology have clearly demonstrated that

linear signalling cascades poorly represent the complexity of

immune signalling (reviewed in [2]). Rather than comprising linear

pathways, immune signalling involves interactions between

thousands of distinct proteins communicating within a complex

network. These networks are organised by a set of highly

connected proteins (known as Hubs) that are essential for receiving

and distributing multiple signals within the network [3–5]. Due to

their key role in the connectivity of complex signalling networks,

Hubs both reflect mechanism and provide biomarkers for cell

types and signalling events [3–5]. It is not yet known whether

differences in Hub usage contribute to cell-specific differences in

signalling networks.

In vivo toll-like receptor 4 (TLR4)-dependent responses to

bacterial lipopolysaccharide (LPS) provide an ideal model in which

to test whether closely related cell subsets show differences in their

immune signalling networks, since a wide array of cell types

express TLR4 and respond to LPS [6–9]. Studies using systems

biology approaches to investigate LPS responses have primarily

focused on clarifying shared mechanisms rather than defining the

differences between closely related cell subsets. Published studies

have shown that LPS responses are initially propagated through

two sets of adaptor molecules: Toll-interleukin-1 receptor (TIR)
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domain-containing adaptor protein (Tirap) and Myeloid differen-

tiation primary response 88 (Myd88) (Tirap-Myd88, the ‘Myd88-

dependent pathway’), or TIR-domain-containing adapter inter-

feron-b-inducing factor (Trif) and TRIF-related adaptor molecule

(Tram) (Trif-Tram, the ‘Myd88-independent pathway’). Addition-

ally, a set of Hubs responsible for orchestrating signalling

outcomes in response to LPS has been defined [6–9]. These Hubs

are essential for signal propagation and belong primarily to the

tumor necrosis factor receptor associated factor (TRAF), interleu-

kin-1 receptor-associated kinase (IRAK), mitogen-activated pro-

tein kinase (MAPK) and nuclear factor kappa-light-chain-enhanc-

er of activated B cells (NFkB) families (extensively reviewed in [6–

9]).

Transcriptional analysis of the LPS response in murine DCs has

generally been confined to cells differentiated in vitro from bone

marrow precursors, with a single report of the response of

unfractionated ex vivo splenic DCs [10–15]. The splenic DC

compartment comprises distinct cell subsets expressing either CD8

or CD11b and manifesting different basal transcriptional pro-

grams [16–26]. CD8 DCs are thought to uniquely cross-present

antigen to CD8 T cells and are the major producers of interleukin

(IL-12) for the regulation of Th1 responses, while CD11b DCs are

thought to be dominant in the regulation of CD4 T cell responses

and Th2 immunity [1,24,27], although not all models support

these functional distinctions [28]. Inactivation of key transcription

factors, including IRF8, BATF3, IRF4 and Ikaros, selectively

interferes with development of CD8 or CD11b DC subsets

[29,30]. However differences in inflammatory signalling pathways

in the two subsets remain poorly defined. Both have been reported

to respond directly to LPS in vitro and in vivo, although they

express relatively low basal levels of TLR4 [31,32]. In vitro

stimulation with LPS induces equivalent production of tumor

necrosis factor alpha (TNFa) and IL-6, but higher production of

IL-12 in CD8 DCs, suggesting that while both subsets share

common signalling pathways and TLR4 potency, subset-specific

differences are also present [31]. Both DC subsets also respond to

a number of mediators released by DCs and other cell types in

response to LPS, so that their response to in vivo LPS

administration comprises a network of direct and indirect effects

that jointly control their ability to differentially stimulate T cells

[1,27]. Such effects may not be adequately modelled by in vitro

LPS stimulation of purified cells.

In this study, we administered LPS in vivo and isolated splenic

DCs from untreated and LPS-treated mice with minimal

manipulation. We then used RNA-Seq of flow-sorted samples

pooled from multiple mice to compare the physiological responses

of closely related DC subsets to in vivo LPS exposure. Using a

hyper-stringent method for choosing differentially expressed genes

in the DESeq R package [33], we show that CD8 and CD11b

splenic DC subsets respond differently to in vivo LPS stimulation,

and that many of the transcriptional changes previously defined in

the LPS response of unfractionated DCs are present in only one of

the two subsets.

We used network analysis to identify a subnetwork in each DC

type in order to elucidate the mechanisms underlying the observed

differences. Such subnetworks are thought to contain key

regulators of the measured response. Importantly, they are self-

reinforcing, and are therefore less susceptible to variability in

individual gene detection [3–5]. The 2 DC subsets generally

expressed the same set of core LPS response molecules, many of

which served as Hubs in each subset-specific subnetwork. Both

subsets also expressed a common set of cell-surface receptors

required for responses to secondary mediators released after LPS

stimulation. However, the sets of proteins interacting with these

core Hubs were significantly different in the 2 subsets. Important-

ly, the majority of such interacting proteins, including Atf3,

Tnfaip3 (A20), Tradd and Cdkn1a, are already known to be

modulators of common signalling pathways, although they had not

previously been accorded subset-specific roles. These data support

a model in which distinct immune responses to the same stimulus

are achieved by differential ‘fine-tuning’ of core pathways by

subset-specific modulators. Finally, we validated our hypothesised

model using meta-analyses of other cell populations, showing its

relevance to inflammatory LPS signalling in multiple cell subsets in

mouse and human.

Results

Differential activation of DC subsets by in vivo exposure
to LPS

Spleen cells were harvested from steady-state (n = 5) and LPS-

treated (n = 10, 24 hours after 25 mg LPS i.p) mice and DC subsets

purified using magnetic bead enrichment for lineage (CD19, B220,

CD3, Gr-1, Ter119)-negative, CD11c-positive cells, followed by

flow sorting according to the gating strategy shown in Figure 1A.

We confirmed that DCs were indeed activated by in vivo LPS

administration by comparing expression of the activation marker

CD86 to that of steady-state cells (Figure 2A–B). As expected [34],

both DC subsets responded to LPS in vivo by up-regulating CD86.

We also confirmed that our enrichment and gating strategy for

steady-state and LPS-treated DCs excluded monocyte-derived

DCs identified on the basis of coexpression of FccR1 (CD64) and

FceR1a [35] (Figure S1). RNA-Seq was then performed on the 4

RNA samples, using standard techniques as described in the

Materials and Methods section. Significantly differentially ex-

pressed genes were identified using a hyper-stringent method from

the R package DESeq at a p-value cut-off ,0.05 [33]. We assessed

the quality of our RNA-Seq data by comparing our steady-state

data with published results from the literature. We first compiled a

set of the top 50 prototypical subset-specific genes, based on

published studies of mRNA and protein expression, and showed

that our steady-state data faithfully recapitulated the published

patterns (Figure 1B). Next we calculated the overlap between our

steady-state data and 9 published datasets (datasets 1–9 listed in

Table S1 [16–26]) using a hypergeometric test (Figure 1C, see

Materials and Methods). The highly significant overlap between

differentially expressed genes in our steady-state dataset and each

of the published datasets indicated that our steady-state data were

remarkably consistent with previously published data. These

analyses indicated that our dataset provided a suitable measure

of gene expression, even though it contained only a single pooled

sample for each experimental condition.

We next analysed LPS-induced gene expression by comparing

LPS stimulated with steady-state data for each subset. LPS

stimulation of CD8 DCs led to a significant change in the

expression of 481 genes (397 upregulated, 84 downregulated),

while in CD11b DCs there was a significant change in the

expression of 471 genes (428 upregulated, 43 downregulated)

(Table S3). We also confirmed that both subsets expressed

detectable Tlr4 mRNA (CD8 DCs: 59 and CD11b DCs: 92

normalised counts per million). Interestingly, the observed LPS

responses were highly subset-specific. Thus 49% of differentially

regulated transcripts in CD8 DCs were subset-specific, while the

corresponding figure for CD11b DCs was 48% (Figure 2C). Many

of these differentially regulated genes are known to be important

immune effector genes, suggesting an LPS-regulated functional

divergence between the 2 DC subsets. Compared with CD8 DCs,

CD11b DCs selectively upregulated a wider range of transcripts

Subset-Specific Responses to LPS in DCs
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encoding cytokines/chemokines (including Ccl6, Ccl7, Ccl22,

Cxcl3, Cxcl10, Cxcl16, Il1b, Il15, and Tnf), while CD8 DCs

selectively upregulated co-stimulatory molecules such as Cd274

(PD-L1), Icosl, and Tnfsf4 (OX40L) (Figure 2D). These transcrip-

tional changes are likely to be mediated by a combination of direct

(LPS-TLR4) signals and secondary soluble (cytokines/chemokines)

and/or cell-to-cell signals from the LPS-activated splenic micro-

environment.

To identify known biological pathways underlying the differ-

ences between the subsets, we performed gene ontology (GO) term

over-representation analysis on the significantly differentially

regulated genes. The GO term analysis afforded further evidence

that our data from single pooled samples provided a valid measure

of gene expression. Thus genes annotated by GO terms associated

with LPS-stimulation (response to lipopolysaccharide and cellular

response to lipopolysaccharide) and with the general inflammatory

response (cytokine-mediated signalling pathway, immune re-

sponse, inflammatory response, innate immune response) were

significantly enriched in both subsets, although the individual

genes within the GO categories differed between the subsets

(Table 1). GO terms associated with regulation of the apoptotic

process were enriched in both subsets although they reached

statistical significance only in CD11b DCs, while the GO term

‘negative regulation of the inflammatory response’ was signifi-

cantly enriched only within the CD8 DC subset (Table 1).

Interestingly both apoptosis and negative regulation are charac-

teristic of the so-called ‘‘late’’ LPS response [6–9].

Comparison of DC subset-specific LPS responses with
published analyses of unfractionated DC responses

In contrast to the extensive published microarray characterisa-

tion of steady state DC subsets, most studies assessing LPS

responses in DCs have used in vitro-derived DCs. We compared

our data with these LPS response datasets to test how many of the

significantly differentially expressed genes specific for each subset

had also been identified within the published datasets. DC

responses to LPS have usually been modelled using murine

bone-marrow (BM)-DCs derived from in vitro stimulation of BM

cells matured into DCs in 5–8 day cultures containing granulo-

cyte-macrophage colony-stimulating factor (GM-CSF), alone or in

combination with IL-4, IL-3, IL-6, and/or stem cell factor (SCF)

[36,37]. While BM-DCs can be subdivided into CD24- and

CD11b-expressing subpopulations [36–38], they have been

analysed by microarray only as a ‘mixed’ population. LPS

responses are dynamically regulated over time and influenced by

multiple factors including the type and dose of LPS [13,31,39]. We

Figure 1. Comparison of steady-state spleen DC subsets. (A) Steady-state splenic DCs were magnetic bead-enriched for CD192B2202CD32Gr-
12Ter1192CD11c+ cells. MHCII+CD11c+ cells (circled) were then sorted for CD8 (blue gate) and CD11b (orange gate) subsets and RNA prepared and
analysed by RNA-Seq. (B) Heatmap showing the relative expression of the 50 most commonly defined and validated markers for CD8 and CD11b
subsets. Data are presented as fold changes (CD11b/CD8), all of which were statistically significant with an associated p-value ,0.05. Orange denotes
genes that were increased in CD11b DCs while blue denotes genes that were decreased in CD11b DCs (and thus increased in CD8 DCs. (C) Overlap
between genes that were significantly differentially expressed between CD8 and CD11b DCs in our dataset and in 9 previously published microarray
datasets derived from splenic DC subsets (datasets 1–9 listed in Table S1). The significance of overlap between the gene list from our dataset and
those from each of the published datasets was calculated using a hypergeometric test to assess the consistency/quality of our results. Data are
presented as 1/p-value on a log scale with all overlaps reaching a significance cut-off ,0.05.
doi:10.1371/journal.pone.0100613.g001
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reanalysed 5 published microarray datasets, containing a total of

10 timepoints (datasets 10–14 listed in Table S1, [10–14]), and

identified 12,886 LPS responsive genes (p-value ,0.05) in BM-

DCs.

We then performed 2 different analyses comparing our 24 hour

timepoint data from sorted DC subsets with the published datasets.

In the first, we included all 12,886 published LPS-responsive genes

in the comparison. Of the 705 LPS responsive genes identified in

our in vivo studies, 484 (69%) were also identified in at least one of

the in vitro BM-DC datasets (Figure 3A). The high degree of

overlap between our in vivo activated DCs and in vitro stimulated

BM-DCs further validates the quality of our results and suggests

that a major part of the observed transcriptional response in our ex

vivo DCs was directly TLR4-mediated. However, 289 (60%) of

these 484 commonly identified genes were regulated in a subset-

specific manner in either CD8 (143 genes) or CD11b (146 genes)

DCs after in vivo LPS stimulation (Figure 3A). Next we repeated

our comparison using only the 24 hour timepoint from the

GSE17721 dataset [13], the sample that was the most consistent

with our experimental setup. A similar trend was observed in this

analysis, with 98 (52%) of the 189 genes identified in both studies

being regulated in a subset-specific manner in our dataset

(Figure 3B).

We also reanalysed the only published microarray dataset

derived from splenic DCs isolated directly from LPS-treated mice

(dataset 15 listed in Table S1, [15]). These cells were stimulated

for 6 hours in vivo with a combination of LPS and anti-CD40, and

isolated on the basis of CD11c expression without fractionation

Figure 2. Subset-specific LPS-induced gene signatures. (A–B) Dendritic cells were stimulated in vivo with an intraperitoneal injection of 25ug
LPS and their activation confirmed by measuring upregulation of CD86 24 hours later. (C–E) LPS stimulated DC subsets isolated from a second cohort
of mice (n = 10, spleen cells pooled) were magnetic bead enriched, sorted, analysed by RNA-Seq, and then compared to steady-state controls (n = 5,
spleen cells pooled). (C) Differences in LPS-induced gene expression were visualised in a Venn diagram. (D–E) Heatmaps showing the expression of
key immune effector genes (D) uniquely regulated in either CD8 (left) or CD11b DCs (right) or (E) similarly regulated in both subsets. Data are
presented as fold changes (+LPS/2LPS).
doi:10.1371/journal.pone.0100613.g002
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into subsets [15]. Despite differences in stimulus and timepoint,

190 of our 705 genes were also identified in this dataset

(Figure 3C). Consistent with our observed subset specificity, 47%

of the 190 were differentially regulated between subsets in our

RNA-Seq analysis (Figure 3C).

These results indicate a degree of DC subset-specificity within

the LPS response that had not previously been apparent from

analysis of unfractionated populations such as BM-DCs and

CD11c-expressing splenic DCs. Many of the previously identified

‘LPS-responsive genes’ may be regulated within only a subset of

the total population, and novel subset-specific genes may be

missed in such analyses.

Splenic DC subsets share a common set of LPS-
responsive transcription factors and signalling molecules

Subset-specific transcriptional responses to LPS have been

reported in non-DC cell types, but the mechanisms underlying this

specificity have not been thoroughly addressed [40,41]. To identify

molecular mechanisms underlying the observed transcriptional

differences between the 2 closely related splenic DC subsets in our

study, we employed a number of systems biology approaches. As a

first step, we tested whether there were major primary signalling

differences between the 2 subsets by looking for differential

expression and activity of key LPS-response molecules, including

transcription factors.

We performed over-representation analysis on transcription

factor-target LPS-induced genes in each subset, using a list of

transcription factor-gene interactions based on experimental

evidence and downloaded from innateDB [42]. Both subsets were

significantly enriched for genes regulated by the transcription

factors Cebpb, Irf1, Irf8, Jun, Nfkb1, Rela, and Sp1, although the

individual genesets were only partially overlapping between the

subsets (Table 2). Genes regulated by the transcription factor Egr1

were enriched in both subsets, although the effect narrowly failed

to reach statistical significance in CD8 DCs (p-value 0.062).

Importantly, all these transcription factors were constitutively

expressed by both DC subsets and are known to play key roles in

LPS responses [6–9].

We also compared the relative expression of core LPS response

molecules in the steady-state and after LPS stimulation. 48 core

molecules were curated either as key canonical signalling

molecules in LPS responses defined in multiple publications [6–

9] and/or identified within the KEGG and Reactome databases

(Figure S2). Importantly, these core molecules are also known to

serve as essential mediators of many other immune signalling

pathways and thus would be predicted to function as Hubs in both

primary LPS-TLR4 and secondary signalling pathways. Of the 48

core molecules, only 3 (Ticam2, Tlr4 and Ikbke) showed

differential expression between the 2 subsets, and none were

consistently differentially expressed both before and after LPS

stimulation (Figure S2). The TLR4 signalling adaptor protein,

Ticam2 (Trif) was significantly upregulated in CD11b DCs only

before stimulation, whereas Tlr4 itself and the signalling molecule,

Table 1. GO terms annotating LPS-induced genes in CD8 versus CD11b DCs.

GO Term CD8 DCs CD11b DCs

Pval2 Odds-Ratio1 Pval2 Odds-Ratio1

Aging 1.9e-03 4.7 2.7e-04 5.2

cell adhesion 8.7e-03 3.4 1.0e-03 3.7

cellular response to lipopolysaccharide 2.7e-08 13.3 9.0e-10 15.1

cytokine-mediated signalling pathway 1.8e-04 7.7 5.4e-04 7.1

G-protein coupled receptor signalling pathway 7.3e-05 3.0 3.0e-05 3.1

immune response 7.0e-08 5.4 2.4e-13 7.8

inflammatory response 3.1e-08 5.7 7.3e-15 8.5

innate immune response 2.8e-04 4.9 2.7e-08 7.1

positive regulation of angiogenesis 8.7e-05 9.7 5.4e-06 11.2

response to drug 9.8e-04 3.2 4.7e-10 5.1

response to estradiol stimulus 9.2e-03 5.7 4.5e-03 5.9

response to lipopolysaccharide 2.8e-10 7.8 4.8e-19 12.3

response to organic cyclic compound 3.4e-02 3.8 3.4e-04 5.1

response to virus 4.2e-06 6.8 1.2e-05 6.4

anti-apoptosis 3.3e-01* 2.7 1.4e-02 3.7

negative regulation of apoptotic process 4.6e-01* 2.0 3.4e-03 2.9

positive regulation of apoptotic process 1.5e-01* 2.6 1.7e-03 3.5

proteolysis 4.7e-01* 1.9 4.6e-02 2.4

negative regulation of inflammatory response 6.7e-05 12.0 1.9e-01* 4.9

positive regulation of gene expression 5.7e-03 4.3 6.3e-02* 3.3

GO term over-representation analysis of LPS-induced genes in CD8 and CD11b DCs.
1. The ratio of odds (Odds-Ratio) that a GO term is enriched in the selected DC subset was calculated as the odds of a differentially expressed gene divided by the odds
of a non-differentially expressed gene occurring in the GO term.
2. P-values are adjusted to control for multiple comparisons.
*denotes not significant (p.0.05).
doi:10.1371/journal.pone.0100613.t001

Subset-Specific Responses to LPS in DCs

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e100613



Ikbke, were significantly upregulated in the CD11b subset only

after stimulation (Figure S2).

In this analysis, clear subset-specific differences in key

transcription factors and core signalling molecules could not be

identified. Instead, these data support a model in which both DC

subsets signal through a common set of molecules.

DC subset-specific responses are ‘fine-tuned’ by distinct
pathway modulators

We next performed network analysis on the differentially

expressed genes in each subset, in order to identify potential

modulators of the subset-specific responses. As a first step, we

uploaded our defined list of 48 core LPS response molecules into

the immune database and analysis platform InnateDB, to generate

a network containing these molecules and their first-order

interacting partners. This identified 2279 interacting genes. We

then filtered this network for interacting nodes (genes) that were

significantly differentially expressed in the DC subsets. This

filtered analysis identified multiple differences in LPS-responsive

genes that interact with, and are known to modulate, the function

of the 48 core signalling molecules (Figure 4A, Table S4). CD8

DCs uniquely regulated Anxa2, Atf3, Birc2, Cd81, Ctnnd1,

Ddx58, Dnajb1, Egr1, Fkbp5, Gadd45g, Hspa1b, Ikzf4, Il12b,

Il1r1, Itgam, Jak3, Ksr1, Map2k6, Mef2c, Nfkbia, Peli2, Prdm1,

Pygl, Relb, Sertad1, Spib, Stat4, Tgm2, Tnfaip3, Traf1, and

Zfp36. CD11b DCs uniquely regulated Atxn1, Bcl2l1, Bcl2l11,

Cd209b, Cdkn1a, Erc1, Fosl2, Fth1, Gadd45a, Hmox1, Id1, Id2,

Igf2r, Il15, Il1rap, Jdp2, Map4k4, Myo1d, Nfe2, Nlrp12, Nos2,

Notch1, Notch3, Optn, Pld3, Plin2, Pnrc1, Prdx5, Rhbdf2, Rhoc,

Sh3bp5, Slc12a2, Snap23, Sod2, Tlr2, Tlr4, Tnf, Trib1, Trim29,

Tuba8, and Usp2.

Figure 3. Population vs. subset-specific LPS-responses. (A) Data from published studies comparing in vitro stimulated GM-CSF derived BM-
DCs +/2 LPS stimulation (datasets 10–14 listed in Table S1) were reanalysed for differential gene expression. All LPS-induced genes identified in BM-
DCs at any of the 10 timepoints (p-value ,0.05) were compared to LPS-induced genes in our study and visualised in a Venn diagram. (B) Only genes
differentially expressed in the 24 hour timepoint sample from the GSE17721 BM-DC dataset (dataset 13 listed in Table S1) were compared to LPS-
induced genes in our study and visualised in a Venn diagram. (C) Genes identified as significantly differentially expressed (p-value ,0.05) in splenic
CD11c+ DCs stimulated in vivo with LPS and anti-CD40 and isolated after 6 hours were compared to in vivo LPS-induced genes in our study (isolated
after 24 hours) and visualised in a Venn diagram (dataset 15 listed in Table S1).
doi:10.1371/journal.pone.0100613.g003
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A limitation of this method for finding differentially regulated

pathway modulators is that their identification was based on

known interactions with a predefined list of core signalling

molecules involved in LPS responses. As an alternate unbiased

approach, we generated first-order interaction subset-specific

networks from all differentially expressed genes in each subset,

and then applied an unbiased subnetwork analysis. This success-

fully yielded core subnetworks containing 317 individual nodes for

CD8 DCs and 297 nodes for CD11b DCs (Figure 5, Figures S3–

S4, Tables S5–S6). These unbiased subnetworks, which include

Table 2. Expression of canonical transcription factor-target TLR4-dependent pathways mediating the LPS response in CD8 and
CD11b DCs.

Transcription Factor CD8 DCs CD11b DCs

Pval2 Odds-Ratio1 Pval2 Odds-Ratio1

Cebpb 3.6e-05 6.2 2.8e-06 6.2

Irf1 4.6e-08 7.4 8.1e-12 8.4

Irf8 4.3e-06 2.6 9.6e-13 3.3

Jun 9.6e-06 7.5 2.7e-10 11.2

Nfkb1 4.3e-06 6.5 1.2e-11 9.7

Rela 2.2e-11 7.9 9.6e-13 7.3

Sp1 9.6e-06 8.2 1.1e-02 3.5

Egr1 6.2e-02* 1.3 5.1e-03 1.3

Transcription factor-target over-representation analysis of LPS-induced genes in CD8 and CD11b DCs.
1. The ratio of odds (Odds-Ratio) that a transcription factor-associated pathway is enriched in the selected DC subset was calculated as the odds of differentially
expressed genes being regulated by the transcription factor divided by the odds of non-differentially expressed genes being regulated by the same transcription factor.
2. P-values are adjusted to control for multiple comparisons.
*denotes not significant (p.0.05).
doi:10.1371/journal.pone.0100613.t002

Figure 4. Subset-specific expression of pathway modulators. LPS-induced regulation (+LPS/2LPS) of pathway modulators in mouse (A–B)
and human (C–D) cell subsets, visualised in Venn diagrams. (A) CD8 and CD11b DCs from our study. (B) Thioglycolate-elicited peritoneal macrophages
and bone-marrow derived macrophages [26]. (C) Vd1 and Vd2 cd T cells [40]. (D) Retinal vascular endothelium and choroidal endothelial cells [41]. (E)
Cord blood peripheral blood monocytes and neutrophils [48]. Datasets in (B–E) are listed as 16–19 in Table S1.
doi:10.1371/journal.pone.0100613.g004
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the most interconnected genes involved in the LPS response of

each DC subset, demonstrated less than 50% overlap with each

other, indicating significant differences in response between the 2

subsets. To initially characterise the 2 subnetworks, Pathway (from

Reactome) and GO term over-representation analysis was

performed on the genes comprising the subnetworks. No

significant differences in Reactome Pathways were observed

(Table 3). Both subnetworks were significantly enriched in nodes

annotated by Reactome as being in pathways relating to TLR4

signalling, including both Myd88-dependent and -independent

cascades (Table 3). GO terms relating to the LPS-response, the

MAPK and NFkB cascades, and the general inflammatory

responses were also over-represented in both networks (Table S2).

Next we examined the extent of node interconnection in the

unbiased subnetworks in order to identify Hubs, which are defined

as the most interconnected nodes within a network (nodes with the

highest number of interactions). Hubs receive and integrate signals

from multiple signal transduction pathways and are thus thought

to be essential regulators or modulators of cell signalling. In the

context of our in vivo LPS response model, the identified Hubs

would be predicted to be integrating primary LPS-TLR4 and

secondary immune signals to generate the observed immune

outcomes. The degree of interconnection for each node was scored

using the cytoscape plugin Cytohubba [43]. This analysis revealed

that many Hubs (defined as nodes with more than 5 interactions)

were the core LPS response molecules curated from the literature

(Figure 5, Figure S2, Tables S5 and S6). Tlr4, Traf6, Ikbke, Irf7,

Nfkbia, Fos, Jun, and Mapk1 were Hubs in both CD8 and CD11b

DC subnetworks (Figure 5). When overlayed on the linear TLR4

KEGG pathway, these common Hubs mapped to both the

Myd88-dependent and -independent pathways (Figure S5). This

analysis further supports a model in which transcriptional

responses to both primary and secondary signals are orchestrated

via molecular pathways common to both subsets, consistent with

the transcription factor and core signalling molecule expression

data.

However, we did identify some core signalling molecules that

were selectively present in only one of the 2 unbiased subnetworks.

Thus the CD8 DC subnetwork uniquely contained Map3k7,

Mapk11, and Tab2, while the CD11b DC subnetwork uniquely

contained Ikbkg, Irak1, Mapk8, Myd88, Nfkb1, Rela, Ripk1,

Tirap, Tollip, and Traf3 (Figure 5). Once again, these Hubs

mapped to both the Myd88-dependent and -independent path-

ways (Figure S5), potentially suggesting that modulation of a

‘common’ signalling cascade occurs at different intervention points

in the 2 subsets.

Given the large number of predefined core LPS response Hubs

identified within both unbiased subnetworks, we analysed the

subnetworks (Figure 5, Tables S5–S6) for the presence of the

pathway modulators identified in the initial filtered analysis

(Figure 4A, Table S4). A high degree of overlap was observed

between the two analyses. 83% of the CD11b and 96% of the

CD8 subset-regulated nodes identified in the filtered analysis were

also identified in the unbiased subnetworks. In addition, many of

these pathway modulators were among the most highly intercon-

nected Hubs (defined as nodes with more than 15 interactions)

within the unbiased subnetworks, or directly interacted with the

most highly interconnected Hubs, consistent with a key functional

role. Atf3, Ep300, Gadd45g, Ikzf4, Jak3, Relb, Tnfaip3 and

Zbtb16, which were selectively present in the CD8 DC unbiased

subnetwork, and Cdkn1a, Fth1, Gadd45a, Id2, Notch3, Ser-

binb9/Spi6, and Tradd in the CD11b DC subnetwork, are all

known key modulators of cell signalling. Our analysis indicates for

the first time that these molecules are also candidate modulators of

DC subset-specific responses to LPS.

We also identified a number of additional cell surface receptors

including IL-7R and CXCR4 as Hubs (5–20 interactions) present

within the subnetworks of both subsets (Figure 5). These receptors

are known to recognise the LPS-inducible ligands IL-7 and

CXCL12, respectively [44–47], and their presence within both

signalling subnetworks is consistent with an important role for

secondary immune mediators in influencing the observed

transcriptional responses in the context of the immune microen-

vironment.

Based on these results, we suggest that LPS responses are

regulated through a set of common pathway molecules in both DC

subsets. Subset-specific responses are achieved by differential

regulation of known pathway modulators that subsequently ‘fine-

tune’ signalling by means of their interactions with common Hubs

and multiple other signalling molecules involved in primary (LPS-

TLR4) and secondary cytokine/chemokine/cell-cell interaction

pathways (Figure 6).

The model of subset-specific LPS response regulation is
applicable to non-DC cell populations

To test whether regulation of transcriptional responses to LPS

in other cell subsets is consistent with our model, we reanalysed

published datasets for which two distinct but related cell subsets

were stimulated with LPS in the same experiment (datasets 16–19

listed in Table S1). This meta-analysis included paired datasets

comparing mouse thioglycate-elicited peritoneal macrophages

with bone marrow-derived macrophages (Figure 4B, Table S7,

[26]), human Vd1 versus Vd2 cd T cells (Figure 4C, Table S8,

[40]), human retinal vascular versus choroidal endothelial cells

(Figure 4D, Table S9, [41]), and cord-blood monocytes compared

with neutrophils (Figure 4E, Table S10, [48]) These datasets all

used in vitro stimulated cells and thus measured only primary

TLR4-mediated outcomes.

We repeated the filtered and unbiased network analyses, as

described above, on datasets 16–19. Consistent with our DC data

(Figure 4A), subset-specific gene regulation was seen in every

paired dataset (Figure 4B–E, Tables S7–S10). Once again, there

was a large overlap between the filtered and unbiased analyses,

and many of the most interconnected Hubs in each of the

unbiased subnetworks were either core TLR4 signalling molecules

or candidate modulators identified in the original filtered analysis

(Tables S11–S18). As predicted by our model, many of these

modulators were selectively present in only one of two paired

subnetworks (Tables S11–18).

Discussion

Dendritic cells are essential in triggering and tailoring the

adaptive immune response. Understanding how defined DC

subsets differentially respond to pathogenic signals is a crucial

step in understanding how subset-specific control of immune

outcomes is achieved. To address this question, we employed

systems biology approaches to globally characterise the responses

of splenic CD8 and CD11b DC subsets following LPS stimulation.

Our methodology focused on identifying sets of modulators (the

product of network analysis) rather than specific genes, and was

specifically designed for the analysis of single pooled samples. As

our conclusions are based on a self-reinforcing network analysis

[3–5], combined with a hyper-stringent method for choosing

differentially expressed genes [33], the need for multiple replicates

was reduced compared to methodologies considering individual

gene expression events. In addition, we used extensive meta-
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Figure 5. Network analysis of LPS-responsive genes in CD8 and CD11b DCs. Individual network analyses were carried out on the
transcriptional response of (A) CD8 and (B) CD11b DCs stimulated in vivo with LPS as compared to steady-state. Subnetwork analysis was used to
enrich networks in an unbiased manner for interactions with differentially expressed genes. The full subnetworks for each subset (Right Panels) were
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analyses to validate the quality of our data in the absence of

technical replication (Figures 1C, 3, Table S1).

Using RNA-Seq on cells isolated ex vivo from pooled biological

replicate animals and immediately FACS sorted, we have shown

that CD8 and CD11b DC subsets respond uniquely following in

vivo LPS stimulation (Figure 2). We have defined new subset-

specific biomarkers and mechanistic information in addition to

confirming previously identified differences in surface marker

expression and cytokine secretion following LPS stimulation in

vitro and in vivo [34,37,49]. One unique finding from our analysis

was the unexpectedly wide range of cytokines/chemokines and co-

stimulatory molecules differentially regulated in CD11b and CD8

DCs (Figure 2C). This might indicate an inherent difference in the

use of soluble versus cell-to-cell dependent mechanisms for

modulating immune responses in the 2 DC subsets. Our analysis

also implicates differential responsiveness to external stimuli as one

of the mechanisms by which DC subsets regulate their function-

ality. To our knowledge, this is the first comprehensive examina-

tion of the inflammatory transcriptional response in well-defined

DC subsets in vivo. In contrast to a recent report in which steady-

state plasmacytoid DCs, conventional DCs, and the CD8 DC

subset were individually subjected to network analysis of only those

genes uniquely expressed by DCs, we included all expressed genes

in a direct comparison of subsets, thus highlighting the behaviour

of key functional molecules expressed in common with a range of

other cell populations [20]. Several other groups have also

identified core modulatory molecules within immune response

pathways, but have focused on related cell types, rather than

subsets within a single cell type [50–54].

A major implication of our study is that the transcriptional

response to LPS is DC subset specific, and that analysis of

unfractionated populations will by definition over-generalise such

responses. To highlight this concept, we compared LPS responsive

genes in our study to those identified in published datasets. As

predicted, datasets from in vitro stimulated BM-DCs and in vivo

stimulated unfractionated CD11c+ DCs included many LPS

responsive genes that were regulated in a subset-specific manner

within our study (Figure 3A–C). This observation has major

relevance to our understanding of responses to LPS, which has

usually been defined by the study of mixed populations, and has

often been generalised/extended across additional populations

without experimental verification. Our study suggests that

transcriptional control of signalling networks may need to be

refined in a subset-specific context.

While we observed a high degree of overlap with published

datasets from LPS-stimulated BM-DCs, over 30% (221 out of 705)

edited to show a smaller core network for ease of visualisation while retaining the original topology. These smaller core networks include those genes
with the largest Hub degree (interconnectivity with other genes in the full subnetwork), all core LPS response molecules, and key subset-specific
modulators interacting with these genes. Subset-specific nodes are labelled in blue (unique to the CD8 subnetwork) or orange (unique to the CD11b
subnetwork), while nodes labelled in black text are present in both subnetworks. The size of each node is proportional to its Hub degree, while node
colour indicates relative gene expression (+LPS/2LPS). Square nodes represent core LPS response molecules. The full subnetwork diagrams, made
using the Cytoscape plugin Cerebral to show the cellular localisation of each gene, are displayed in Figures S3 and S4, while a list of nodes/network
characteristics is provided in Tables S5 and S6.
doi:10.1371/journal.pone.0100613.g005

Table 3. Reactome pathways enriched within the CD8 and CD11b DC subnetworks.

Reactome Pathway CD8 DCs CD11b DCs

Pval Pval

Activated TLR4 signalling 1.2e-06 7.3e-11

Adaptive Immune System 1.7e-04 3.1e-09

Cell-Cell communication 2.5e-05 4.4e-03

Cytokine signaling in Immune system 5.1e-21 2.4e-19

Growth hormone receptor signaling 3.6e-10 1.6e-10

Immune System 2.9e-26 4.6e-29

Innate Immune System 1.5e-11 8.0e-16

Integrin cell surface interactions 3.0e-09 1.4e-08

Interferon signaling 8.3e-11 3.4e-05

Interleukin-2 signaling 1.8e-06 7.3e-06

Interleukin-3, 5 and GM-CSF signaling 2.6e-07 8.9e-06

MyD88 dependent cascade initiated on endosome 1.4e-04 2.0e-07

MyD88-independent cascade 2.3e-06 1.2e-11

NFkB and MAP kinases activation mediated by TLR4 signalling repertoire 5.9e-05 6.0e-09

RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 2.6e-07 1.1e-07

Signaling by Interleukins 8.5e-13 6.8e-18

Toll Like Receptor 4 (TLR4) Cascade 1.2e-06 9.6e-12

Toll Receptor Cascades 2.6e-07 2.3e-13

TRIF mediated TLR3 signaling 6.0e-05 6.0e-09

Reactome pathway over-representation analysis of nodes within the CD8 or CD11b subnetworks. P-values are adjusted to control for multiple comparisons.
doi:10.1371/journal.pone.0100613.t003
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of the LPS responsive genes identified in our study had not

previously been identified in any BM-DC dataset (Figure 3A),

while 73% were not identified in the BM-DC dataset from the

same timepoint (24hr) as our study (Figure 3B). This may be due to

many factors, including the influence of additional signals in the

splenic microenvironment, differences in the starting DC popu-

lation, experimental variables such as the use of microarrays and/

or differences in experimental set-up/reagents, or a combination

of these factors. GM-CSF-induced BM-DCs are known to

comprise a mixed population of ‘inflammatory’ DCs (CD24-

and CD11b-expressing subsets) that poorly reflect the in vivo

steady-state DC populations in terms of surface marker expression

and cytokine secretion [36–38]. Thus the comparison between

BM-DCs and steady-state splenic DC subsets is complicated both

by the poor correlation between populations and by the ‘mixed’

nature of the BM-DC population. Despite this, our results suggest

the use of murine BM-DCs as model ‘DCs’ is failing to capture the

subset-specificity of LPS responses within the DC compartment.

Fms-like tyrosine kinase 3 ligand (Flt3L) may support a more

physiological in vitro model for investigating DC signalling in a

subset-specific manner, since Flt3L-generated BM-DCs more

closely resemble the splenic CD8 DC [36]. Similar to the BM-

DC comparisons, the disparity between our findings and the

published analysis of in vivo LPS-stimulated CD11c+ DCs

(Figure 3C) may in part be explained by experimental differences

including the addition of anti-CD40 to the LPS stimulus,

combined with the much shorter stimulus time (6 hr versus

24 hr) [15].

To explore how subset-specific differential responses to LPS

stimulation may arise, we performed network analysis on LPS-

regulated genes in the 2 DC subsets. We initially defined a set of 48

core LPS response molecules based on their well established roles

in propagating and modulating LPS responses. The lack of gross

signalling differences between the subsets was indicated by

comparable expression of the vast majority of the 48 core

molecules in the 2 subsets (Figure S2). Unbiased subnetwork

analysis revealed that many of the core LPS response molecules

were also present as core Hubs within the unbiased subnetworks

(Figure 5), while Reactome pathway analysis indicated that both

the Myd88-dependent and -independent pathways were highly

enriched within the both subnetworks (Table 2). Thus it appeared

that primary LPS-dependent signalling was likely to be similar in

the 2 DC subsets. One notable exception was the increased steady-

state expression of the signalling adaptor Ticam2 (Trif) in CD11b

compared with CD8 DCs (Figure S2), which might suggest a bias

in CD11b DCs towards signalling via the ‘Myd88-independent

pathway’ mediated by Trif. However overlaying the core LPS

signalling molecules within the CD11b subnetwork (Ikbkg, Irak1,

Mapk8, Myd88, Nfkb1, Rela, Ripk1, Tirap, Traf3, and Tollip)

onto the KEGG TLR4 pathway (Figure S5) indicated a distribu-

tion across both Myd88-dependent and -independent arms. This

was also the case for the subset of core molecules common to both

networks (Ikbke, Irf7, Fos, Jun, Mapk1, Nfkbia, and Traf6), once

again supporting a model in which both subsets share the same

primary TLR4-dependent signalling machinery. The three core

molecules uniquely present in the CD8 subnetwork (Map3k7,

Mapk11, and Tab2) mapped to the Myd88-dependent pathway.

However CD8 DCs have previously been shown to signal through

Trif after polyI:C stimulation, indicating that they also possess a

functional Myd88-independent pathway [55].

The transcription factor-dependence of the differentially

expressed genes was also comparable between the 2 DC subsets

(Table 2). The identified transcription factors, including Nfkb1,

Rela and Jun (AP-1), are all known to adopt key roles in functional

aspects of the LPS response [6–9]. Although Irf8 was expressed at

consistently higher levels in CD8 DCs (Table 2, Figure 1B) and is

known to be critical for CD8 but not CD11b DC development

[56], genes regulated by Irf8 were highly enriched in both CD11b

and CD8 subsets, consistent with the known impairment of

responses to CpG and LPS in Irf8-deficient CD11b DCs [56].

Collectively, these data suggests that both DC subsets utilise a

common core pathway, characterised by a well established set of

signalling Hubs and transcription factors.

The absence of clear differences in known pathway components

supports a more subtle mechanism of signal modulation (Figure 6).

Both filtered and unbiased network analyses clearly identified sets

of genes with known regulatory or modulatory function uniquely

present within the subset-specific subnetworks (Figures 4A, 5,

Tables S4–S6). We hypothesize that LPS-dependent transcrip-

tional regulation of these genes mediates the observed subset-

specific differences in the response to the combination of primary

(LPS-TLR4) and secondary immune signals to which the DC

subsets are exposed in vivo. Within CD8 DCs, the GO term

‘negative regulation of the inflammatory response’ was over-

represented, supported by the identification of known negative

regulators Atf3, Tnfaip3 (A20), and Zbtb16 (PLZF) as key hubs in

the network analysis, and suggesting that negative regulation may

be a hallmark of the CD8 subset [57–59]. Interestingly, Atf3 is a

predominant negative regulator of inflammation [51] and has

been previously identified as one of the most important molecules

identified within the signalling network of LPS-stimulated bone-

marrow macrophages [54]. Differential regulation of MAPK

signalling might by another mechanism by which DC subsets

mediate subset-specific responses, as Gadd45g (uniquely identified

in the CD8 subnetwork) and Gadd45a (uniquely identified in the

CD11b subnetwork) are known to differentially modulate MAPK

pathways in hepatoma cells [60]. Similarly, the CD11b subnet-

work uniquely contained TRADD, which is known to play a

differential role in regulating NFkB and MAPK signalling in

fibroblasts versus macrophages and is a likely key mediator of the

unique CD11b DC LPS-response [61]. Cdkn1a (p21/WAF1/

CIP1), also exclusively present within the CD11b subnetwork, was

another highly interconnected Hub that is known to be essential

Figure 6. The pathway modulation model. Schematic represen-
tation of our proposed model. LPS-induced signaling occurs through a
common set of signaling molecules. LPS induces the expression of
subset-specific TLR4 pathway modulators, which ‘fine tune’ signaling
and allow for distinct immune outcomes in closely related cell subsets.
These pathway modulators likely integrate both signals derived directly
from TLR4 and exogenous signals from the microenviroment that
contribute to the subset-specificity of the response.
doi:10.1371/journal.pone.0100613.g006
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for regulating LPS activation in macrophages [62,63]. Thus our

analysis has revealed previously unappreciated subset-specific roles

for several known signalling modulators.

We propose that our model in which the fine-tuning of central

immune pathways mediates subset specific responses is indeed

relevant in a physiological context since our data were obtained

from cells taken directly from mice with minimal manipulation.

Our experimental design characterising ‘late’ in situ DC subset

responses to LPS provides a more physiological model than an ex

vivo stimulation assays. However, while both DC subsets can

respond directly to LPS [31], our analysis is complicated by the

integrated response of the DC subsets to additional exogenous

signals arising from the splenic microenviroment. In agreement

with this, we identified differential expression of a number of

additional cell surface receptors within the unbiased subnetworks

of the 2 DC subsets (Figure 5). This suggests that both DC subsets

are integrating direct (LPS-TLR4) signals with those from other

secondary immune mediators such as IL7 (via IL7R) and

CXCL12 (via CXCR4), which are known to play multifunctional

roles in regulating DC function [44–47]. However, the greatest

strength of unbiased subnetwork analysis is the ability to identify

key functional molecules (Hubs) within complex signalling

networks, without relying on previously defined linear pathways.

Therefore, the core LPS response molecules and pathway

modulators identified here as Hubs are likely responsible for

integrating signals derived directly from TLR4 with additional

exogenous signals, resulting in the observed subset-specific

responses. Indeed a major strength of this study is the physiolog-

ical, complex nature of the in vivo stimulus, and its potential to

serve as a basis for identifying key secondary immune signals

regulating DC function following LPS exposure (such as CXCL12-

CXCR4). However, further studies are needed to fully characterise

how the observed subset-specific responses are controlled in the

context of the immune microenvironment.

While we have identified many candidate genes potentially

involved in regulating subset-specific responses (as discussed

above), our hypothesised model is primarily based on sets of

subset-specific modulators regulating common signalling path-

ways, rather than these individual genes. This ensures that our

conclusions are relatively resistant to errors introduced by using a

single pooled sample for each condition. As with any transcrip-

tional-based study, complex functional studies, such as those using

knockout/knockin models, will be required to validate individual

genes that are actively regulating subset-specific function. How-

ever, we believe that our approach represents an important first

step in understanding how cell subsets may regulate their

responses to common stimuli.

Given our focus on sets of modulators, we chose to validate the

suitability of our hypothesised model of pathway modulation and

signal integration, rather than the expression of individual genes.

To do this, we tested how well our model fitted to published

datasets for both mouse and human cell subset responses to LPS.

In each dataset, we identified cell subset-specific modulators that

are known to interact with core LPS response molecules and

which uniquely act as Hubs within their respective signalling

networks (Tables S7–S10). While we cannot fully exclude other

mechanisms contributing to the observed subset differences in

these published datasets, the results strongly support our current

model. Thus pathway modulation appears to represent a global

mechanism allowing for tightly controlled and specific responses to

LPS in related but distinct cell populations.

While we have subdivided DCs in this study on the basis of CD8

and CD11b expression, multiple reports have suggested that the

splenic DC network is much more complex and that splenic DCs

can be further subdivided based on the expression of many

additional surface markers including ESAM1 [64], DCAL2 [65],

CD207/Langerin [66], CD103 [67] and/or CD205/DEC-205

[68]. Our model would predict that further subdivision on the

basis of these markers would reveal additional layers of complexity

in the subset-specific regulation of LPS responses. Further

complexity also arises from the dynamic nature of LPS responses

over time [13,39,53]. Previous network analysis of time course

responses has shown that the majority of Hubs are only transiently

involved as key regulators under certain conditions, and that even

permanent Hubs redefine their interactions dynamically [5]. Since

we consistently identified differential subset-specific regulation of

TLR4-interacting proteins in datasets from multiple timepoints

and cell populations in mouse and human (Figure 4, Tables S7–

S10), it is likely that this means of signalling modulation and fine

tuning plays a critical role throughout the response.

Materials and Methods

Mice and treatment
All mice were housed under specific pathogen-free conditions in

the Centenary Institute Animal Facility. [C57BL/66B10.BR]F1

mice on a CD45.1/CD45.2 heterozygous background were used

for all experiments. Our unpublished results have identified no

differences in phenotype and function of splenic DC subsets

isolated from [C57BL/66 B10.BR]F1 mice and their C57BL/6

counterparts. Mice were injected intraperitoneally with 25 mg LPS

(rough strains from Salmonella enterica serotype Minnesota Re 595,

Sigma-Aldrich) per mouse. Animals were sacrificed mice 24 hours

after LPS injection.

Ethics Statement
Approval for all animal experimentation was obtained from the

Animal Ethics Committee at the University of Sydney.

Flow cytometry and cell sorting
Spleens were pooled from 5 (control) or 10 (LPS-stimulated)

animals, digested with 2 mg/ml Collagenase IV from Clostridium

histolyticum (Sigma-Aldrich) and a single cell suspension prepared as

described previously [69]. Cells for RNA-Seq were prepared by

cell sorting. Briefly, splenocytes were stained for B220 (clone RA3-

6B2) prior to DC selection. DCs were isolated with anti-CD11c

MicroBeads (clone N418, Miltenyi Biotec) after enrichment for

Lineage (Ter119/B220/CD19/CD3/Gr-1)-negative cells using

rat anti-mouse antibodies and anti-rat IgG MicroBeads (Miltenyi

Biotec). Selected DCs (78% purity) were stained for CD11c (clone

HL3), CD11b (clone M1/70), CD8 (clone 53–6.7) (all from BD/

Pharmingen) and pan-MHCII (clone M5/114, eBioscience).

Staining was performed in PBS containing 5% FCS and 10mM

EDTA, non-specific staining was blocked with unconjugated anti-

CD16.32 (clone 2.4G2) and DAPI was used to exclude dead cells.

B2202MHCII+CD11c+ cells were sorted into CD11b+ and CD8+

subsets on Aria-Ilu (BD) to 99.1% and 86.3% purity, respectively).

For analysis, DAPI-negative (live cells) events were gated on

forward scatter height vs. area to exclude doublets. CD86

expression was detected using anti-CD86 (clone GL1, BD/

Pharmingen). To identify monocyte-derived DCs, cells were

additionally stained with anti-FceR1a (clone MAR-1,

eBioscience), CD64/FccR1 (clone X54-5/7.1, BD/Pharmingen)

and Gr-1 (unconjugated, detected with anti-Rat-Alexa488, Invi-

trogen).
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RNA isolation and RNA-Seq
Total RNA was isolated from sorted DCs (.98% purity in

every sample) using RNeasy Micro Kits (Qiagen). A minimum of

200,000 cells and 100 ng of RNA per condition were used for

RNA-Seq. RNA quality was determined using a Bioanalyzer 2100

(Agilent Technologies), and cDNA libraries were prepared from

total RNA according to the Illumina TruSeq RNA sample

preparation guide. Unique adapter indexes (Illumina) were

attached during sample prep and samples were run pooled and

loaded into a single flow cell lane to reduce technical variability.

RNA-Seq was performed on a GAIIx instrument (Illumina), using

a single read run with 36 amplification cycles (29 sample +7

adapter/index sequence).

Data Processing
Raw basecall data was converted to FASTQ sequence files

using Off-Line Basecaller (Ilumina) and a custom Perl script.

Reads were aligned to the mm9 mouse genome with TopHat

version 2.05 and Bowtie1 version 0.12.7 [70]. Reads were initially

mapped to Ensembl transcripts with the search for novel junctions

disabled, using standard Tophat filtering/stringency parameters

[70]. Genomic coordinates were then transformed into counts of

protein-coding Ensembl genes. To do this, a chimeric gene-model

was first defined by merging all protein-coding transcripts for a

given gene. Transcripts that had reads in less than 50% of their

exons in all samples were defined as not expressed and were

excluded from the chimeric transcriptome. Reads that overlapped

the chimeric genes were counted using the htseq-count script in

the intersection-nonempty mode (http://www-huber.embl.de/

users/anders/HTSeq/doc/count.html). The script discards

multi-mapped reads as well as reads that overlap multiple distinct

genes, to generate a file of uniquely mapped gene counts. No

additional gene filtering was performed. Total mapped reads to

protein coding genes were 6702672 for steady state and 5536485

for LPS-stimulated CD8 DCs, and 6368840 for steady state and

2582238 for LPS-stimulated CD11b DCs.

Transcriptional Analysis
Analysis of RNA-Seq gene count data was performed in R using

Bioconductor ([71] r02290). Differential gene expression was

calculated using the DESeq package [33]. DESeq was run with the

method = blind and sharingMode = fit-only settings for single-

replicate experiments. This sets all samples as replicates of each

other when calculating the variance. This method tends to be

over-conservative as compared to a replicated experiment ([33]

r02353). Genes with an associated p-value #0.05 were scored as

differentially expressed between samples. A full list of expressed

genes is provided in Table S19. Gene ontology (GO) and

transcription factor-target over-representation analyses were cal-

culated using the Wallenius distribution in the goseq package,

which normalises for RNA-Seq length biases ([72] r02354). Tests

in which fewer than 10 genes in a term were observed in both

subsets were excluded from further analysis. The threshold of

significance in the ORA tests was defined as a Benjamini-

Hochberg [73] adjusted p-value #0.05. Odds-Ratios were

calculated as the odds of a differentially expressed gene occurring

in the ORA category divided by the odds of a non-differentially

expressed gene occurring in the ORA category, so that numbers

greater than 1 are considered to reflect associations that are likely

to be real. GO-Terms to gene mappings and Reactome Pathway

to gene mappings were obtained using the biomaRt package [74].

Transcription factor to gene mappings were downloaded from

InnateDB after searching for protein-gene interactions between all

genes (including those predicted by orthology) [42]. RNA-Seq data

was deposited in the NCBI Gene Expression Omnibus (GEO)

repository (GSE42573).

Network analysis
Differentially expressed (DE) genes from multiple analyses were

uploaded separately into InnateDB [42], a specialised interactome

database containing all known protein-protein interactions but

highly curated for immune protein reactions, to generate a list of

interactions between DE genes in the dataset, and with first-order

non-DE proteins with curated experimental evidence of an

interaction. Interactions predicted by orthology were included in

all analyses. To analyse the complex functional relationships

between genes comprising the observed LPS stimulation signa-

tures, regulated genes were viewed as nodes in a network

(‘‘network analysis’’), connected to one-another by their protein-

level interactions (edges), as previously described [75,76]. Briefly,

interaction networks were visualised in Cytoscape [77] using the

Cerebral plugin to show gene location relative to the cell [78].

These networks were filtered for protein-protein interactions after

removing duplicate edges, self-loops and the general ubiquitin,

Ubc. Ubc interacts with ,3000 proteins and its inclusion thus

biases subsequent subnetwork analyses. Subnetwork analysis was

carried out on each of the networks using the jActive plugin for

Cytoscape, and the top significant subnetworks were ranked on the

basis of their calculated Z-score [79,80]. Multiple significant

subnetworks were merged for some comparisons based on their

high degree of overlap and associated z scores within a stratum.

Highly interconnected gene nodes within these subnetworks are

referred to as Hubs, and represent key molecules involved in signal

trafficking. While the term ‘‘Hub’’ cannot be rigorously defined in

the context of computational network analysis, we have defined

Hubs as nodes with 5 or more interactions and the ‘‘most highly

interconnected’’ Hubs as nodes with 15 or more interactions. Hub

degree was scored using the Cytoscape software plugin cytoHubba

with the higher scoring nodes predicted to represent essential

molecules [43].

In separate filtered analyses, core signalling molecules in the

TLR4 pathway in mouse and human were uploaded into

InnateDB to generate a list of 2279 first-order interacting proteins

[42]. This network was filtered for interacting nodes significantly

differentially expressed in a cell subset and visualised as a venn

diagram representing each interacting nodes’ differential expres-

sion in one or both of the subsets.

Meta-Analyses
Normalised datasets were downloaded from NCBI GEO using

the Bioconductor package GEOquery [81]. GSE15907 and

GSE32381 were downloaded manually from NCBI GEO as raw

CEL files, quantile normalised and RMA background corrected.

Datasets were included in our analyses if they contained at least

two biological replicates (see Table S1 for a list of reanalysed

datsets). Differential expression was calculated using the limma

package. Genes were defined as significant at a Benjamini-

Hochberg [73] adjusted p-value ,0.05. A minimum fold change

cut-off of 2 was applied for network analysis. Genes from cd T cells

(GSE3720), endothelial cells (GSE7850), and cord blood mono-

cytes and neutrophils (GSE39840) were defined significant at a

non-adjusted p-value cut-off of 0.05 and a fold-change cutoff of 2.

To compare our RNA-Seq study to previously published

microarray datasets characterising steady-state splenic DC subsets

(datasets 1–9 listed in Table S1), we used a hypergeometric test

approach. To do this, we first identified those genes in each dataset

that were significantly differentially expressed in CD8 versus

CD11b DCs at a p-value cut-off of 0.05. We then used a
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hypergeometric test to calculate the significance of overlap

between each of these gene lists and the gene list derived from

our RNA-Seq study.

Supporting Information

Figure S1 DC purification strategy excludes monocytes
and inflammatory monocyte-derived DCs. Spleen cells

from control and LPS-injected mice were subjected to the pre-sort

bead selection procedure as described in Materials and Methods.

Selected cells were stained for MHCII, CD11c, CD64/FccR1,

FceR1a, Gr-1 and CD11b, and analysed for the presence of

contaminating monocytes, inflammatory monocytes and mono-

cye-derived DCs. (A) The lineage (CD19, B220, CD3, Gr-1,

Ter119)-negative MHCII+CD11c+ gating strategy excludes

FccR1+FceR1a+ monocyte-derived DCs. (B) Conversely, mono-

cytes and inflammatory monocytes expressing Gr-1 do not

significantly contaminate the MHCII+CD11c+ sorting gate shown

in the right panels.

(TIFF)

Figure S2 Expression of core LPS response molecules.
Comparison of core LPS response molecules in CD8 and CD11b

DCs in the steady-state (2LPS) and after LPS stimulation (+LPS).

Data are presented as fold changes (CD11b/CD8). * Significantly

differentially expressed before LPS stimulation; ** Significantly

differentially expressed after LPS stimulation.

(TIFF)

Figure S3 Network analysis of LPS-responsive genes in
CD8 DCs. A network analysis was carried out on the

transcriptional response of CD8 DCs stimulated in vivo with

LPS as compared to steady-state. Subnetwork analysis was used to

enrich networks in an unbiased manner for interactions with

differentially expressed genes. The figure was made using the

Cytoscape plugin Cerebral to show the cellular localisation of each

gene. The size of each node is proportional to its Hub degree

(interconnectivity with other genes), while node colour indicates

relative gene expression (+LPS/2LPS). Square nodes represent

core LPS response molecules. Nodes labelled in blue text are

present in the CD8 but not CD11b DC subnetwork, while nodes

labelled in black text are present in both. Networks were organised

using the Cytoscape plugin Cerebral, which organises nodes based

on their relative cellular location. For visualisation, only selected

nodes are labelled. The full list of nodes/network characteristics is

provided in Table S5.

(TIFF)

Figure S4 Network analysis of LPS-responsive genes in
CD11b DCs. A network analysis was carried out on the

transcriptional response of CD11b DCs stimulated in vivo with

LPS as compared to steady-state. Subnetwork analysis was used to

enrich networks in an unbiased manner for interactions with

differentially expressed genes. The figure was made using the

Cytoscape plugin Cerebral to show the cellular localisation of each

gene. Node size is proportional to its Hub degree (interconnectivity

with other genes/nodes), and node colour indicates relative gene

expression (+LPS/2LPS). Square nodes represent core LPS

response molecules. Nodes labelled in orange text are present in

the CD11b but not CD8 DC subnetwork, while nodes labelled in

black text are present in both. Networks were organised using the

Cytoscape plugin Cerebral, which organises nodes based on their

relative cellular location. For visualisation, only selected nodes are

labelled. The full list of nodes/network characteristics is provided

in Table S6.

(TIFF)

Figure S5 Subset-specific Hubs in relation to a KEGG
pathway map of TLR signalling. Core LPS response Hubs

identified in the subnetwork analysis of CD8 or CD11b are

identified by coloured dots and gene names (italics) overlayed on a

KEGG pathway map. Black dots and text indicate Hubs identified

in both subnetworks, blue indicates Hubs identified only in the

CD8 subnetwork and orange indicates Hubs identified only in the

CD11b subnetwork.

(TIFF)

Table S1 List of reanalysed datasets and their associ-
ated references.

(DOCX)

Table S2 GO term over-representation analysis on
nodes within the CD8 or CD11b subnetworks. P-values

are adjusted to control for multiple comparisons.

(CSV)

Table S3 Differentially-expressed genes identified by
comparing LPS stimulated with steady state expression
data for each DC subset.

(XLSX)

Table S4 Gene list of differential pathway modulators
in CD8 and CD11b DCs from this RNA-Seq study, as
depicted in Figure 4A.

(XLSX)

Table S5 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in CD8 DCs.

(XLSX)

Table S6 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in CD11b DCs.

(XLSX)

Table S7 Gene list of differential pathway modulators
in thioglycolate-elicited peritoneal macrophages and
bone-marrow derived macrophages, as depicted in
Figure 4B.

(XLSX)

Table S8 Gene list of differential pathway modulators
in Vd1 and Vd2 cd T cells, as depicted in Figure 4C.

(XLSX)

Table S9 Gene list of differential pathway modulators
in retinal vascular endothelium and choroidal endothe-
lial cells, as depicted in Figure 4D.

(XLSX)

Table S10 Gene list of differential pathway modulators
in cord blood monocytes and neutrophils, as depicted in
Figure 4E.

(XLSX)

Table S11 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in thioglycolate-elicited macrophages.

(XLSX)

Table S12 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in bone-marrow derived macrophages.

(XLSX)

Subset-Specific Responses to LPS in DCs

PLOS ONE | www.plosone.org 14 June 2014 | Volume 9 | Issue 6 | e100613



Table S13 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in Vd1 cd T cells.
(XLSX)

Table S14 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in Vd2 cd T cells.
(XLSX)

Table S15 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in retinal vascular endothelial cells.
(XLSX)

Table S16 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in choroidal endothelial cells.
(XLSX)

Table S17 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in cord blood monocytes.
(XLSX)

Table S18 Full node lists and corresponding network
characteristics for the subnetwork of LPS-responsive
genes in cord blood neutrophils.

(XLSX)

Table S19 All differential expression data from this
RNA-Seq study.

(CSV)
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