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Abstract

Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide
spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane
of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in
animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated
by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause
resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the
wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph
Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-
expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged
vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were
suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic
stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon
wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense
responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a
common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response
pathways likely contributes to resource reallocation for higher tuber yield.
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Introduction

Sustained plant losses due to microbial diseases cause crop
yield reduction and are of major economical concern to farmers
and agriculture industry [1,2]. Throughout the world, therefore,
there is an ongoing effort to develop crops resistant to different
diseases. Understanding host plant-microbe interactions and
elucidating mechanisms that enable some plants to defend
against one or more pathogens are currently dynamic research
areas [3]. The dynamics of plant response to a disease(s)
change with environmental interactions [4], thus requiring an in-
depth understanding of the molecular mechanisms involved.
Plants that are able to resist a pathogen are more capable than
the susceptible ones in creating physical barriers like

thickening and lignification of the cell wall [5,6], deposit callose
[7], release phenolics or toxic substances (phytoalexins,
proteinases, proteinase inhibitors) that inhibit the pathogen
growth or detoxify pathogen-derived toxins [8], and release
chemicals that inactivate the hydrolytic enzymes secreted by
the pathogen [6].

Plants are known to harbor a unique systemic immunological
response, which is activated upon recognition of a pathogen.
One of the extensively studied inducible plant defense
responses is a hypersensitive response (HR). Cells displaying
HR undergo localized programmed cell death (PCD) to limit the
damage, and the host plant may get immunized against
subsequent pathogen attack, a phenomenon named systemic
acquired resistance (SAR) [3,9]. HR is accompanied by an
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oxidative burst due to reactive oxygen species (ROS) [10], and
changes in defense-related gene transcripts [11]. Metabolites
such as glycerol-3-phosphate [12] and pipecolic acid [13] and
hormones such as ethylene, salicylic acid (SA), jasmonates
(JAs), nitric oxide (NO) and abscisic acid (ABA) have been
implicated in plant immunity through regulating SAR [14].
Salient features of plant immunity to pathogens involve
transmembrane protein receptor-like kinases (RLKs) or
proteins (RLPs) [15,16], which respond to molecular patterns
(pathogen associated molecular patterns – PAMPs) [17,18], as
well as epigenetic-related hypomethylated genes [19]. Plants
also respond to effector molecules secreted by pathogens by
activating R proteins harboring nucleotide binding domain and
leucine-rich repeats (NLR), leading to PCD at the infection site
[3,18,20]. The NLR receptor family-triggered immunity seems
conserved across plant lineages and it was suggested that
NLR could interact with different host proteins to mediate
distinct resistance responses [21,22]. Interestingly, expression
of pepper Bs2 resistance (R) gene, which recognizes AvrBs2
effector released by Xanthomonas sp, was shown to provide
field level resistance to the bacterial spot disease in transgenic
tomatoes [23].

Oxidative burst due to ROS generation is one of the early
physiological events in plant-microbe interactions. The
oxidative burst kinetics are biphasic, and the first wave might
constitute a signaling function while the second wave triggering
PCD [24]. That the ROS production is a feature not only
restricted to HR defense but also to stress caused by abiotic
factors [25], led to the studies that showed that biotic and
abiotic defense responses overlap [26,27]. Notably, one of the
players in the crosstalk between these two defense responses
was shown to be the abscisic acid-induced myb1 gene
encoding an R2R3MYB transcription factor, which is induced
by both pathogens and abiotic stresses [28]. Indirect support
for crosstalks between different plant-specific defense
responses was predicted from the observation of extensive
overlaps in transcriptional profiles between pathogen response
and wounding in Arabidopsis [29].

Plants also employ another type of defense against
pathogens (bacteria, fungi and viruses) through the production
of antimicrobial peptides (AMPs) [30,31] that have a wide
distribution from microorganisms to complex eukaryotes
[32,33]. AMPs represent small proteins that vary in molecular
size from 0.88 to 8.86 kDa [34] with diverse functions in innate
immunity [35]. This form of defense is conserved during
evolution [36]. Plant AMPs are classified into several families
based on the overall charge, disulphide bonds and structural
stability [34,35,37]. Their amphipathic nature provides AMPs an
advantage in interacting with negatively charged microbial
membrane components, and thereby altering membrane
permeability of the pathogen leading to cell death [38,39]. It
could place AMPs role in defense in a category different from
the above mentioned HR and PCD strategy, which requires
mobilization of resources and shift in metabolism to ensure
plant survival [40]. However, although AMPs are believed to be
anti-infective molecules bearing direct toxicity to the pathogens,
it has become apparent from experiments using animal models
that they modulate signaling pathway(s) and associated innate

immune responses [41,42]. Thus, LL37 cationic peptide (CAP)
specifically suppressed the inflammatory response to bacterial
lipopolysaccharide, an important part of host defense. CAP
was found to bind LPS and reduce the production of ROS by
inhibiting nitric oxide (NO) synthase [43,44]. It is therefore
intriguing that AMPs may play a role in cellular processes in
addition to those in host defense against pathogens. In plants,
information on whether HR-mediated and AMP-dependent
defense responses interact with each other is scarce. Also, it is
relatively unknown how plants choose one type of defense over
the other. Differences notwithstanding, the plant immune
response shows many parallels with animal innate immunity in
terms of surveillance mechanism and HR-induced cell death
[45]. The plant cell death bears resemblance with pyroptosis, a
phenomenon of cell death in animal cells catalyzed by
casapase-1 or with necroptosis, a mechanism involving a burst
of ROS but independent of caspase activation [46].

Potato is the fourth largest crop after rice, wheat, maize and
tomato. It is one of the most important consumed vegetables in
the world [47]. Diseases and pests cause major losses in total
potato production, conservative estimates putting annual
losses at 22% worldwide [48-50]. Late blight due to the fungal
pathogen Phytophthora infestans [51] and bacterial soft rot and
blackleg due to the bacterial pathogen Erwinia sps. [50] are
among the major constraints to potato yield. Interestingly,
potato constitutively produces AMPs, called Snakin 1 and
Snakin 2, whose gene transcripts are upregulated by pathogen
infection and wounding [52,53]. Transgenic research has
demonstrated that when heterologous antimicrobial peptide
variant, synthetic AMP, or other plant AMPs are introduced into
plants including potato bring about a broad-spectrum
resistance to diverse types of phytopathogens [54-58]. The
overexpression of potato Snakin-1 in potato plants also
enhanced resistance to Rhizoctonia solani and Erwinia
carotovora [59]; however, when this gene was silenced in
potato, it was found to affect growth and development
processes such as cell division, primary metabolism and cell
wall chemistry [60].

Molecular engineering of the N terminus of temporin A gene,
which belongs to a family of smallest antimicrobial peptides in
nature, led to a new gene called msrA3 [57]. Expression of this
gene in potato led to broad spectrum resistance of the
transgenic plants including the harvested tubers to two fungal
and one gram negative bacterial pathogens [57]. These studies
and such transgenic plants have provided a new resource for
studying the effects of AMPs not only in plant pathogen
response but also their impact on abiotic stress responses. In
this study, we tested these transgenic potato lines for their
response to abiotic stresses (induced senescence, oxidative
stress and wounding) as well as to a potato pathogen
(Fusarium solani). We show here that msrA3-expression
modulates physiology and gene transcript profiles of the
transgenic potato plants impacting HR, ROS, dark-induced
senescence and wounding processes. The msrA3-mediated
mitigation of these defense responses of potato plants was
associated with a positive increase in the yield of transgenic
potatoes.

Antimicrobial Peptide Modulates Defense Responses
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Materials and Methods

Plant material
Potato (Solanum tuberosum L.) cultivar Desiree (WT) and

two transgenic lines (T3 and T26) expressing antimicrobial
peptide msrA3 gene [57] were grown in the greenhouse facility,
University of Victoria, Victoria, B.C., Canada. The T3 and T26
transgenic lines represent two independent insertion events
and contain a single copy of msrA3 [57]. For brevity, leaflets of
a compound leaf are referred to as leaves.

Growth conditions and tuber yield determination
WT and the T3 and T26 transgenic plants were grown from

seed tubers. Tubers with a mean weight of 56 g (50-63 g) were
planted in 11-L and 15-L pots for growth chamber and
greenhouse experiments, respectively. Number of plants per
pot was three for growth chamber and four for greenhouse, if
not specified otherwise. After 2 weeks of germination, one dose
(75 g) of 6-8-6 (nitrogen/phosphorus/potash) fertilizer (Evergo
Canada Inc., Delta, B.C., Canada) was applied. In growth
chamber, the plants were raised under 16/8h photoperiod at
21°/18°C day/night temperature unless otherwise stated. The
plants were watered as needed. At each time of planting, the
pots were triplicated in a randomized clear block design in a
chamber. In the greenhouse, plants were grown in 6
replications under 16/8h daylight and irrigated through
automated drip irrigation. Following 16 weeks of growth, the
fresh tuber yield was recorded.

RNA extraction and northern-blot analysis
Total RNA was isolated from frozen leaf tissue with Trizol as

per the manufacturer’s protocol. RNA was fractionated on 1%
agarose-formaldehyde gels and blotted onto nylon membrane
(Schleicher & Schull, Germany). Gene probes were labeled
with [α-32P] dCTP using High Prime random priming kit (Roche)
and purified on ProbeQuant G-50 Micro Columns (GE
Healthcare). The membranes after hybridization with the
respective probes for 16h at 65°C were washed twice with
2xSSC, 0.1% SDS at 65°C for 20 min each, once in 1xSSC,
0.1% SDS and twice in 0.2xSSC, 0.1% SDS for 20 min each at
60°C. The hybridized blots were exposed to X-ray films with
intensifying screens at -75°C. Following genes were analyzed:
Pathogenesis-related protein (pr-1) (AJ250136), osmotin (osm)
(AY256439), ascorbate peroxidese (apx) (AB041343), catalase
(cat) (Z37106), γ-vacuolar processing enzyme (vpe) (D61395),
senescence associated gene 12 (sag12) (AI776170), 13-
lipoxygenase (13-lox) (X96406), potato peroxidase2 (Stprx2)
(AJ401150), Cu/Zn superoxide dismutase (sod) (AF355460),
longevity assurance gene1 (lag1) (AF198177), rbcL (AI486088)
and glutamine synthetase-1 (gs-1) (AW626325). (Table S1 in
File S1) lists primer sequences used for amplifying the gene
probes. The genes, pr-1, vpe, lag1and cat, were PCR amplified
from potato genomic DNA. For apx and Cu/Zn sod, the cDNA
was prepared to RNA isolated from untreated leaves. For
Stprx2 and13-lox, the cDNA was prepared to RNA isolated
from wounded leaves. Amplification and primer sequences for
osm, sag12, rbcL and gs-1 were the same as previously
described [61]. cDNA was synthesized using SuperScriptTmII

RNaseH reverse transcriptase (Invitrogen) following
manufacturer’s protocol. The Qiagen MasterMix kit was used
for 25 µl PCR reactions as follows: 94°C for 10 min, and 35
cycles of 94°C for 30 sec, temp (1°C below Tm of the primer
sequence) for 30 sec, and 72°C for 1 min followed by 15 min
extension at the end.

In situ detection and determination of H2O2

H2O2 was visualized in leaves using 3, 3’-diaminobenzidine
(DAB) staining [62]. The cut end of each detached leaf was
incubated with 1mg mL-1 DAB, pH 4.5 for 3h. After leaf de-
colorization in hot ethanol (95%), the intensity of brown color
stain was monitored.

For quantifying H2O2, leaf tissue (400 mg) was powdered in
liquid nitrogen and then homogenized in 1 mL 10%
trichloroacetic acid (TCA). The homogenate was centrifuged at
16,000 g for 15 min and supernatant collected. The content of
H2O2 in the supernatant was determined by slight modification
of a previously described method [63]. Briefly, the supernatant
(40μL) was mixed with10 μL of 1N NaOH, and then 50μl of
xylene-orange reagent (500 μM ferrous ammonium sulfate, 50
mM H2SO4, 200 μM xylene orange and 200 mM sorbitol) was
added. The color was allowed to develop for 2 h and the
absorbance determined at 560 nm. To ascertain that TCA
addition had disabled the H2O2-metabolizing enzymes and that
it was compatible with the xylene-orange assay, a known
quantity of H2O2 was added during tissue homogenization for
determining % recovery. The recovery was 99.2% and no
activity of peroxidase or catalase was detected in the TCA-
extract. The assay generated linear curves using different
concentrations of H2O2 in 10% TCA. Only the relative
abundance of H2O2 rather than absolute values are reported
because any unknown component in the plant extract with a
potential to affect the A560 values was not tested.

Enzyme assays
Methods used for preparing cell-free extracts and assaying

guaiacol- or pyrogallol-peroxidases activities were the same as
previously described [64].

Chlorophyll analysis
Total chlorophyll was extracted from leaves by grinding 0.5 g

of tissue with 5 mL of pure acetone in a mortar with pestle
followed by several extractions with 80% acetone to a final
volume of 15 mL. The clarified extract was diluted, and
absorbance at λ 646 nm and λ 663 nm was determined. The
contents of total chlorophyll, chlorophyll a, and chlorophyll b
were calculated as described [65].

Determination of lipid peroxidation
Peroxidated lipids were measured as thiobarbituric acid

reactive species (TBARS) [66]. Frozen leaf tissue (50 mg) was
homogenized in 125 μl of 50 mM 2-morpholinoethanesulphonic
acid (MES), pH 7.1, containing 2% SDS and 2 μl of 1% 2,6-di-
tert-butyl-4-methylphenol (butylated hydroxytoluene). To the
homogenate, 700 μl of 0.8% (w/v) thiobarbituric acid in 10%
TCA was added and the contents vortexed for 1 min. The
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samples were heated at 95°C for 15 min, vortexed for 1 min
and re-heated for 15 min. After cooling on ice, TBARS were
extracted in 500 μl of n-butanol by vigorous mixing. The
contents were centrifuged at 5,000 g for 10 min and
absorbance of the supernatant was measured at 532 nm and
600 nm. TBARS content was determined after subtracting the
nonspecific background absorbance at 600 nm.

Jasmonic acid and salicylic acid analyses
Jasmonic acid (JA) and salicylic acid (SA) were analyzed at

the Plant Biotechnology Institute, National Research Council,
Saskatoon, Canada. The details of JA/SA extraction and
analysis by High Performance Liquid Chromatography
Electrospray tandem Mass Spectrometry (HPLC/ES-MS/MS)
were the same as previously described [67].

Statistical analysis

Data were statistically analyzed using analysis of variance
(ANOVA), and mean separation (Tukey’s) test was performed
using the SPSS statistical program.

Results

Delayed emergence of floral buds in transgenic potato
plants expressing Msra3 gene

One of the earliest phenotypic differences observed between
the wild-type (WT) and transgenic plants (T3 and T26)
expressing msrA3 (msrA3-transgenics) was in the development
of floral buds (Figure 1a). In the growth chamber with a day/
night temperature regime of 28°/22°C, floral buds in WT plants
emerged at 20 days after germination while bud initiation in the
two transgenic lines was not apparent by this time (Figure 1a).
Fifty percent or more of the WT plants had visible buds by day
26 after germination, at least 3 days earlier than seen in
transgenic plants. More validation of the delayed emergence of
floral buds in the transgenic plants compared to the WT was
obtained from experiments carried out in the greenhouse under
natural lighting conditions with a day/night temperature
variation of 33°/12°C. Under these conditions of greater
fluctuations in day and night temperatures than in the
controlled growth chamber, emergence of buds in the WT was
accelerated (Figure 2b). In the transgenic plants, buds initiated
on day 21 (T3) and day 22 (T26) of germination, by which time
60-75% of the WT plants had already developed the buds.
Thus, both the transgenic lines tended to flower later than the
WT plants.

msrA3-transgenics have delayed dark-induced
senescence

The delay in the emergence of floral buds (flowering) in the
transgenic lines indicated that msrA3 expression may impact
leaf senescence since a slower initiation of reproductive
development seems associated with longer vegetative growth
in some plants [68]. Therefore, we tested this possibility using
the model of dark-induced senescence [69]. Detached fully
developed leaves from the WT and the T3 and T26 transgenic

lines were incubated at room temperature in the dark and leaf
chlorophyll content was analyzed on day 1, 3 and 5. By day 5
in the dark, WT plants showed visible symptoms of senescence
but the two transgenic lines were still robust and greener
(Figure 2a). This difference in the physical condition of WT
versus transgenics correlated with the steady loss of
chlorophyll in WT leaves starting day 1 in the dark and
decreasing thereafter to 50% of the original content by day 5
while in the transgenic leaves the chlorophyll content remained
more or less similar until day 3 and registered a slight decline
by day 5 (Figure 2b).

Differential expression of a select class of genes
between WT and transgenic leaves during induced
senescence

Delayed floral development associated with delayed dark-
induced senescence in the msrA3-transgenics suggested that
msrA3 expression influences plant development. We therefore
quantified changes in the expression of a medley of gene
transcripts in the leaves of the WT and the two msrA3-
transgenic lines including anti-senescence gene marker (large
subunit of Rubisco which promotes growth) [70-72] versus pro-
senescence gene markers [senescence associated gene 12
(sag12) and glutamine synthetase-1 (gs-1)] [73]. To that end,
expression of genes not only associated with senescence
[(sag12), γ-vacuolar processing enzyme (vpe), (gs-1)] and
carbon fixation [rubisco large subunit (rbcL)] but also those
associated with oxidative stress [ascorbate peroxidese (apx),
catalase (cat), Cu/Zn superoxide dismutase (sod)] and HR
[pathogenesis-related protein (pr-1), osmotin (osm), longevity
assurance gene1 (lag1)] were analyzed by northern analysis of
RNA from leaves exposed to dark induced senescence (Figure
2c). Dark-induced senescence in WT was associated with
increases in the levels of pr-1, osm, apx, cat, sod, sag12, vpe,
lag1 and gs1 concomitant with a substantial decrease in the
large subunit of rubisco (rbcL) (panel WT). In contrast to these
patterns found in WT leaves, response to dark incubation of the
leaves from the two transgenics (panels T3 and T26) was
different. In fact, the expression of pr-1, osm, apx, cat, lag1 and
gs1 transcripts was mitigated in the two transgenic lines while
sag12 and vpe transcripts were barely observed except sag12
in T26 after 5 days of dark incubation (Figure 2c). Notably, in
the two transgenic lines, expression of rbcL remained at a
steady level and that of sod fluctuated, remaining at a lower
level than the WT. Thus, distinctly different patterns in the
steady state levels of transcripts for genes associated with HR
and senescence between WT and msrA3-transgenics were
apparent and indicated that msrA3 expression dampens the
response seen in the WT leaves, particularly during the early
phase of induced senescence (Figure 2c).

Higher tuber yield in msrA3-transgenics
In order to determine the long-term effects of msrA3

expression in terms of the tuber yield, WT and the two msrA3-
expressing transgenic lines were grown in three different
seasons to full maturity in the greenhouse as well as in a
controlled growth chamber and their tuber yield was quantified.
Tuber yield was consistently and significantly (between
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52-57%) higher in all the three potato lines grown in the
greenhouse as compared to those grown in the growth
chamber (Table 1). However, the greenhouse-grown
transgenic plants yielded 15-16% more tubers than the WT,
and this difference increased further to 20-27% under growth
chamber conditions. The msrA3 expression, therefore, resulted

in positive phenotypic attributes that translated into higher
potato productivity.

Basal oxidative stress in WT is mitigated in msrA3-
transgenics during growth

Since certain senescence and HR responsive gene
transcripts were not upregulated upon induced senescence in

Figure 1.  The development of floral buds is delayed in the msrA3-transgenics (T3 and T26).  (a) Wild-type (WT) plant with the
earliest emergence of a floral bud at 20 days after germination. The circles mark the terminal shoot of transgenics showing no signs
of flower bud initiation. The buds were observed only on the main shoots from three replicated pots each having 3 plants grown in a
growth chamber at day/night temperatures of 280/220C and 16/8 h light/dark cycle with light intensity of 300 µM quanta.m-2.s-1; (b)
Number of newly appeared buds after indicated days of germination. The buds were counted from six replicated pots each having
4-5 plants totaling 28. The plants were grown under natural light in green house with 16 h day length, and night and day
temperature varied between12-33°C.
doi: 10.1371/journal.pone.0077505.g001
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Figure 2.  msrA3-transgenic plants display delay in dark-induced senescence.  (a) Detached compound leaves (5th to 6th from
top) of five week-old plants were incubated in the dark on moist filter paper in Petri dishes at room temperature and were
photographed after 5 days incubation in dark. The Petri dishes were wrapped in aluminum foil to create dark conditions. The
experiment was repeated at least three times and the representative results are shown here. (b) Percent retention of chlorophyll in
wild-type and transgenic plants. The leaves were sampled for analysis at indicated times after incubation in darkness. Bars
represent means + SE (n=3). (c) Expression profile of genes involved in HR and associated senescence in wild-type and msrA3-
transgenic plant leaves kept in the dark (as stated in section [a]) at room temperature for the indicated times. Each lane was loaded
with 20 μg of total RNA. Ethidium bromide stained rRNA served as loading control.
doi: 10.1371/journal.pone.0077505.g002
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the transgenic lines expressing msrA3, as in the WT leaves, we
premised that the ROS-related oxidative processes, normally
connected with HR responses, may also be affected in the two
transgenic lines. We, therefore, monitored the levels of ROS
marker H2O2, peroxidase activity that can either generate ROS
or catalyze transfer of electrons from H2O2 to the donors [74],
and peroxidated lipids generated by lipid oxidation [75] in WT
and msrA3-transgenic leaves over a period of 15 weeks. The
H2O2 level in WT leaves was consistently higher than the
leaves from both the transgenic lines except for the leaves of 7-
week old plants (Figure 3a). On average, the H2O2 level in WT
was 43-47% higher than the T3 and T26 transgenic plants.
These results paralleled the peroxidase activity that was
remarkably lower in the msrA3-transgenics than the WT;
generally, peroxidase activity was 60% higher in the WT plants
as compared to either of the two transgenic lines (Figure 3b).
Along with reduced H2O2 levels and peroxidase activity in the
msrA3-transgenics, thiobarbituric acid reactive species
(TBARS), an index of total oxidized lipids [66], quantified in 7th

and 9th leaf of each line was also lower in the msrA3-
transgenics as compared to the WT (Figure 3c).

msrA3 expression mitigates plant response to some
abiotic stresses

Abiotic stresses [25] including wounding [76] and higher
temperatures [77] are known to ameliorate basic oxidative
stress in plants. We, therefore, determined wound-induced in
situ accumulation of H2O2 by staining the leaves with 3, 3’-
diaminobenzidine (DAB) after wounding [62]. As a result, the
proportion of brown coloration formed around wounded areas
was greater in WT leaves than those in the msrA3-transgenic
leaves (Figure 4a). Moreover, the WT leaf developed brown
coloration also in distant, unwounded parts (Figure 4a, region
indicated by an arrow). Quantification of H2O2 levels in control
and wounded leaves from each line verified the in situ
visualized data. After 1h wounding, over 50% increase in the
steady state level of H2O2 was observed in WT leaves, but not
in the transgenic ones (Figure 4b, wounded). These data
paralleled the changes in peroxidase activity upon wounding of

Table 1. Tuber yield (g/pot) of wild-type (WT) and MsrA3
transgenic plants (T3, T26).

Season Greenhouse Growth Chamber

 WT T3 T26 WT T3 T26
I 810 ± 77 1030 ± 79 1020 ± 56 439 ± 52 527 ± 61 564 ± 94
II 903 ± 53 943 ± 68 960 ± 102 475 ± 48 550 ± 33 574 ± 23
III 809 ± 60 934 ± 18 954 ± 44 400 ± 29 505 ± 25 549 ± 98

Average 841 969* 978* 442 529** 562*
Equal number of WT and transgenic plants were grown in pots for each
experiment. Tuber yield was quantified from plants with no visible symptoms of
disease. Asterisks indicate significant differences comparing the transgenic lines to
WT control. *p < 0.05; **p < 0.1 (Tukey’s test). Data shown are average ± s.e.m. (n
= 6, greenhouse; n > 3, growth chamber.
doi: 10.1371/journal.pone.0077505.t001

leaves in WT plants with abrogation of the increase in msrA3-
transgenic leaves (Figure 4c, wounded).

Similar response in H2O2 levels (Figure 4b, 33°C Temp) and
peroxidase activity (Figure 4c, 33°C Temp) of WT and msrA3-
transgenic leaves was observed when, instead of wounding,
the leaves were given a stress of elevated temperature (33°C).

Patterns of Stprx2 and 13-lox transcripts, and content
of salicylic acid and jasmonate in WT and msrA3-
transgenics

In plants, expression of peroxidase Stprx2 [78] and 13-lox
(13-lipoxygenase) gene [79] transcripts together with increases
in the levels of hormones such as salicylic acid (SA) and
jasmonates (JA) are recognized as part of a wound response.
To further attest the confounding effect of AMP expression in
mitigating potato response to induced senescence, wounding
and high temperature stress, we analyzed effects of wounding
on the abundance of Stprx2 and 13-lox transcripts as well as
the content of SA and JA in WT and msrA3-transgenic leaves.
Wounding caused a profound increase in Stprx2 transcripts
within 1h, the increase being markedly higher in WT than the
transgenic leaves (Figure 5a, Stprx2), which is consistent with
the rise in peroxidase activity seen above (Figure 4c,
wounded). Similarly, wounding led to an increased expression
of 13-lox transcripts in the WT and this increase was relatively
of a lesser magnitude in the msrA3-transgenic plants (Figure
5a, 13-lox).

Wounding caused 1.5 to 2.0-fold increase in SA content
across all the three lines, showing no substantial difference
between WT and transgenic leaves (Figure 5b). However, the
JA content increased upon wounding of both WT and
transgenic leaves but the magnitude of increase was distinctly
higher in the WT (about 6-fold) than the transgenics (Figure
5c). The differences in the JA content in response to wounding
mimic the pattern of induction of 13-lox transcripts (Figure 5a,
13-lox).

Mitigation of normal host hypersensitive response is
associated with resistance to Fusarium solani in
transgenic potato expressing msrA3

Many of the responses of the WT to abiotic stress indicated
above are also normally seen in plant response to a disease.
Since, in principle, the transgenic lines developed with
engineered AMPs were previously shown to be resistant to
fungal and bacterial pathogens of potato [57,58], we
hypothesized that pathogen response of such msrA3-
transgenic lines may be associated with downregulated HR.
Therefore, WT and AMP-transgenic leaves were challenged
with F. solani, observed for symptom development, and then
analyzed for the expression of a few marker genes associated
with HR, ROS, senescence, and programmed cell death
(PCD). Significant protection against symptom development to
F. solani challenge was evident in both the transgenic (T3 and
T26) leaves as reflected by the absence of necrotic lesions and
the retention of greenness even on day 5 days after inoculation
(dai) (Figure 6a). In contrast, the WT leaves developed
necrosis on 3 dai, which became more prominent on 5 dai. The
necrotic spots became chlorotic by day 5 and the progression
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Figure 3.  msrA3-transgenic plants have lower basal oxidative stress level.  (a) Relative level of H2O2 and (b) Peroxidase
activity at different times during the growth of wild-type and transgenic plants. For (a) and (b), the bars represent means + SE (n=3).
The Pie insets represent the average distribution of data in WT, T3 and T26. (c) Lipid peroxidation measured as TBARS in wild-type
and transgenic leaves. The leaves were counted from the top and sampled from 11-week old plants. Bars represent means + SE
(n=4). * p < 0.05 and **p < 0.1 refer to comparison between WT and transgenic (T3 or T26) leaves.
doi: 10.1371/journal.pone.0077505.g003
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Figure 4.  Wild-type and msrA3-transgenic plants display differential response to abiotic stresses.  (a) Levels of H2O2 in
leaves from WT and transgenic (T3 and T26) as determined by staining with DAB. Detached leaves of similar age from 5-week old
plants were mechanically wounded with forceps. Lower one-half of the leaf was punctured to afflict 11-12 wounds each of
approximately 2x4 mm in size. The middle vein was punctured at five places starting from the bottom. The red arrow indicates
systemic wounding response. The experiment was repeated three times and the results were comparable. (b) Relative levels of
H2O2 in WT and T3 and T26 leaves 1 h after wounding (Wounded) or when given temperature stress (33°C Temp) measured as
described in Materials and Methods section. Bars represent means + SE (n = 4). (c) Comparison of peroxidase activity in WT and
T3 and T26 transgenic leaves 1 h after wounding (Wounded) or incubation at 33°C (33°C Temp). Bars represent means + SE (n =
4)For (b) and (c), the leaves were wounded as described above in (a) and incubated on moist filter paper in Petri dishes at room
temperature alongside unwounded (controls). For (b) and (c) ‘33°C Temp’, 4-week-old plants in a growth chamber at day/night
temperatures of 28°/22°C and 16/8 h light/dark cycle with light intensity of 300 µM quanta.m-2 S-1 were exposed to 33°C for 6 h. The
treatment was given at the beginning of the day light cycle. The control plants were kept at 28°C for the treatment period. The 6th

leaf from the top was excised and analyzed. * p < 0.05 and **p < 0.1 refer to comparison between WT and transgenic (T3 or T26)
leaves.
doi: 10.1371/journal.pone.0077505.g004
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Figure 5.  Stprx2 expression and levels of salicylic acid (SA) and jasmonic acid (JA) in control and wounded leaves from
msrA3-transgenic (T3 and T26) and wild-type (WT) plants.  (a) Expression of Stprx2 (indicated by arrow) and 13-lox transcripts
in WT and transgenic leaves 1 h after wounding. RNA loading was the same as described in legend to Figure 2c. (b) Levels of SA
and (c) JA in WT and transgenic leaves 1 h after wounding. The values are average of two independent experiments. Wounding
was carried out the same as described in the legends to Figure 4. * p < 0.05 refers to comparison between WT and transgenic (T3
or T26) leaves.
doi: 10.1371/journal.pone.0077505.g005
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of chlorosis was noticed also in the neighboring leaves (Figure
6a). These data confirmed previous conclusion that msrA3
expression leads to resistance against pathogens [57].

We excised the tissue samples from a parallel set of the F.
solani-inoculated and neighboring leaves of the WT and
transgenic plants, isolated RNA and determined the patterns of
gene transcripts associated with HR, ROS, senescence and

Figure 6.  Hypersensitive response is altered in Fusarium solani challenged msrA3-transgenic plants.  (a) Comparison of
disease symptoms in wild-type (WT) and transgenic (T3 and T26) plants challenged with F. solani. Two middle leaflets of a
detached compound leaf of similar age sampled from 6-7 week old plants were inoculated with 2000 conidia/leaflet (indicated by
arrows), kept on moist filter paper in Petri dishes and incubated at room temperature. The conidia were collected as previously
described [55]. The pictures were taken at 5 days after inoculation. (b) Expression profile of genes involved in HR at indicated times
after inoculation with F. solani as above. (c) Expression of Stprx2 and sod in WT and msrA3-transgenic (T3 and T26) plants at
indicated days after inoculation with F. solani. Neighboring leaf refers to leaflets adjacent to inoculated leaflets. RNA loading was the
same as described in the legend to Figure 2c.
doi: 10.1371/journal.pone.0077505.g006
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PCD. Already by 1 dai, the expression of HR-related genes
(pr-1, osm), ROS-related genes (cat, apx), and senescence-
PCD markers (vpe, gs-1) were greatly upregulated in the
inoculated WT but not in the transgenic leaves except for pr-1
and cat transcripts whose induction, though small, was
apparent also in the transgenic leaves (Figure 6b, compare left
panel WT with T3 and T26). This early induction of the
candidate genes was intensified by 3 dai and slightly declined
by 5 dai for some transcripts in the inoculated WT leaves
(Figure 6b, left panel WT), which corresponded to intense
necrosis in such leaves. The expression of 13-lox transcripts,
responsible for the induction of defense hormone jasmonate,
was evident on 3 dai in the inoculated WT leaves. In the
inoculated transgenic leaves, pr-1 and cat gene transcripts
were present on 3 and 5 dai but their intensity was much lower
than that seen in WT leaves (Figure 6b, compare WT with T3
and T26). Notably, osm, apx, vpe, 13-lox, and gs-1 expression
in the inoculated msrA3 transgenic leaves (T3 and T26) was
nearly absent (Figure 6b, compare lane 0 dai with lanes 1, 3
and 5 dai), excepting for a sudden appearance in 13-lox
transcript in T3 line on 5 dai but this was not reproduced with
T26 line.

A systemic response of F. solani challenge apparent by
chlorosis of the neighboring leaves of inoculated WT plants
was not seen in the msrA3-transgenics (Figure 6a, WT). At the
level of gene transcripts, there was hardly any signal apparent
for the examined genes in the neighboring leaves on 0 dai but
by 1 dai all of them were induced, albeit to different extents
(Figure 6b, Neighboring leaf, WT). In fact, the systemic
increase in lox-13 and vpe gene transcripts in WT plants
occurred on 1 dai while in the inoculated WT leaves their
robust expression was delayed until 3 dai. Overall, when
transcript profiles of the two msrA3-transgenic plants (T3 and
T26) were compared with WT, there was clearly a distinct
absence of induction except for pr-1 and cat genes (Figure 6b).

Suppression of cat and apx gene transcripts in the two
transgenics suggested a low and un-sustained HR response.
This was further confirmed by analyzing the expression
patterns of ROS/oxidative burst associated genes, Stprx2 and
sod in pathogen-inoculated and their neighboring leaves. An
intense signal for their transcripts was apparent in inoculated
WT and the neighboring leaves on 1 dai (Figure 6c). In the
msrA3-transgenic lines, Stprx2 expression was undetected
while that of sod was shadowy.

Discussion

We demonstrate here that expression of an antimicrobial
peptide, MsrA3, in potato provides resistance against the
pathogen F. solani, mitigates plant defense responses
including HR, ROS, leaf senescence and wounding, and alters
timing of bud development, which finally culminates in
increased yield of the two transgenic potato lines. Thus, while
AMPs are known to be directly toxic to plant pathogens
[54,57-59], as was evident here for MsrA3 potato - F. solani
interaction, we show that msrA3 expression also causes
delayed floral development and suppresses the normal

defense pathways of plants in response to a few abiotic-type
stressors.

During normal growth conditions, ROS reflected by the levels
of endogenous H2O2 were generally higher in the WT than the
msrA3 transgenics and these data paralleled the total leaf lipid
peroxidation status (TBARS) in WT versus transgenics. ROS
levels in the WT leaves were further stimulated upon wounding
as well as when the leaves were subjected to a temperature
stress at 33°C. Temperature-induced stress is known to
elevate H2O2 content [77]. Under both wounding and
temperature stress, msrA3 transgenics did not respond by
elevating ROS levels compared to untreated samples.
Elevation of ROS (measured as H2O2 content and DAB
staining) in WT plants and its mitigation in the msrA3
transgenics was associated with a parallel trend in peroxidase
activity during aging, wounding and temperature stress. Thus,
msrA3 expression mitigates the WT plant ROS response to
aging, wounding, and high temperature stress.

Dark-induced senescence led to chlorophyll loss in the WT
line starting at day 1 of darkness but the transgenic plants were
able to retain the chlorophyll content for up to day 3 to the
levels that in day 0 control. Associated with these changes was
a differential accumulation of transcripts of gene markers for
HR (pr-1, osm), ROS (cat, apx, sod), and senescence-PCD
(sag12, vpe, lag1, rbcL, gs-1) in WT versus msrA3 transgenics.
A substantial up-regulation of apx, cat, and sod on day 1 of
darkness in WT leaves is indicative of the onset of oxidative
burst, which was associated with induction of pr-1 and osm
genes suggesting that HR was triggered. Relative to this WT
response, the transgenics expressing msrA3 had a subdued
HR and ROS response, more subdued in T26 line than T3 line,
indicating a lower oxidative stress in them. Further, sag12, vpe,
lag1 and gs-1 transcripts were less abundant in the transgenics
as compared to the WT, but opposite trends of accumulation
were apparent for rbcL transcripts. These results together with
differential loss of chlorophyll content and visual observations
suggest that msrA3 expression antagonizes or delays
apoptosis (PCD, senescence) in transgenics compared to the
WT.

The dampening effect of msrA3 expression on gene markers
for HR, ROS and PCD-senescence in the transgenic lines was
also evident during challenge with the necrotrophic pathogen F.
solani. MsrA3 as an antimicrobial agent effectively prevented
necrosis in the leaves of transgenic potato plants in response
to the pathogen challenge compared to the WT leaves.
Consistent with the phenotypic observations, the transgenic
leaves had subdued induction of pr-1 and osm gene transcripts
compared to their robust induction in the WT leaves within day
1 of pathogen inoculation. Since these genes in potato tubers
form a part of hypersensitive defense response against this
fungus [80], it is evident that msrA3 expression interferes with
the pathogen-mediated HR. The suppressive effect of the
msrA3 expression on HR induction was further supported by
the pattern of induction or lack thereof of cat and apx gene
transcripts in the transgenics. In this regard, selective activation
of vpe and gs-1 only in the leaves of WT plants highlights F.
solani-mediated cell death pathway, which is clearly mitigated
in msrA3-expressing transgenic plants. In addition to its role in
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senescence, vpe is considered as one of the architects of
virus-induced HR and cell death [81]. It is worth noting that vpe
expression was more enhanced in F. solani challenged WT
leaves than during their dark-induced senescence. Cell death
is a culmination of defense response, which is relatively more
rapid and intense in response to a pathogen than during
senescence. Similar trend in the activation of gene transcripts
was evident in the neighboring non-inoculated leaves, which is
reminiscent of the systemic response. Again, except for a
subdued induction of pr-1 and cat gene transcripts, expression
of the remainder of the tested genes was nearly absent in the
inoculated and neighboring leaves of the msrA3 transgenic
plants.

The synthetic activity of peroxidases produces O2
●-,

dismutated by SOD to H2O2 [82]. Induction of the potato
peroxidase, Stprx2, which is more of an anabolic peroxidase
rather than H2O2 catabolizing enzyme due to its similarity with
peroxidases involved in oxidative burst [83,84] (see Figure S1
in File S1), in conjunction with sod transcripts during wounding
and pathogen challenge in leaves of WT plants is suggestive of
its involvement in oxidative burst in potato. These results also
favor the possibility that msrA3 expression intercepts normal
plant defense response including ROS, HR and senescence,
which in turn may contribute to the lower threshold of ROS
homeostasis in the growing plants.

Independent or co-induction of salicylic acid (SA), JA and/or
ethylene is considered a common defense response of plants
against pathogen attack or abiotic stressors [85-88], and likely
culminates in cell death processes involving ROS. SA
increases in response to biotrophs and JA in response to
necrotrophs and insects [89]. Wounding induces synthesis of
JA [90,91], ethylene [90,92] and SA [93]. Also, a selective
involvement of JA and SA has been indicated based on the
wounding agent employed [94,95]. The content of SA and JA in
the unwounded and wounded leaves of WT and msrA3
transgenic plants showed a differential pattern. SA levels were
induced upon wounding to the same extent in the WT and
transgenics while the JA content was considerably increased
upon wounding and the wounded WT leaves contained
several-fold higher JA in contrast to the wounded msrA3
transgenic leaves. These data parallel the extent of
corresponding induction of the 13-lox gene transcripts, which
are known to be involved in JA biosynthesis pathway [96]. The
observed differences in the intensity of DAB-H2O2 staining in
distal leaf tissue of WT and transgenics are consistent with the
role of JA in systemic accumulation of H2O2 in potato, and its
mitigation in plants expressing msrA3.

The findings that msrA3 expression suppresses 13-lox
transcripts during pathogen-induced HR and antagonizes
wounding response of the transgenic potato plants, except may
be for the induction of SA, indicate that MsrA3 interferes with
JA/H2O2 signaling. Involvement of JA and SA in defense
response and resistance against pathogens depend on the life
style of a pathogen [97,98]. Interestingly, an increase in SA and
suppression of JA, as seen here in msrA3-expressing potato
plants, is a phenomenon known to discourage hemibiotrophic
pathogens [99-101]. However, assuming that wounding during
the challenge with F. solani would activate JA synthesis in the

WT leaves as was found here upon normal wounding, we
would have expected more resistance of the WT to this
necrotroph, which was not found to be the case. Instead, the
msrA3 expression in the transgenics was sufficient to trigger
resistance to F. solani even though the JA content was 1/8th the
level of the WT. JA and ROS are the part of a signaling
network responsible for the induction of HR and, subsequently,
when the cell undergoes PCD it benefits the fungus because it
can feed on the dead cells and proliferate. These results
demonstrate that the msrA3 expression introduces facets of
pathogen defense based on its mechanism of pathogen cell-
membrane lysis while using still to be determined
mechanism(s) to mitigate a number of normal host plant
defense responses including wounding, high temperature and
senescence. This, in turn, likely modifies bud development,
prolongs vegetative phase, and tuber yield.

The mechanism by which an antimicrobial peptide mitigates
a plant’s normal response to different stresses or development
is unknown. Previously, cationic antimicrobial peptides with
direct microbicidal property were found to also have the ability
to modify host innate immune response [41]. Nitric oxide, which
mediates S-nitrosation of cellular proteins, was found to
mitigate sensitivity of melanoma cells to cisplatin [102]. In
another instance, negative effects of excessive N on tomato
growth were mitigated by a chemical cocktail provided by a
legume cover residue [103].

A stress environment induces a higher threshold of ROS,
which in plants modulates development, signaling the stressed
plant to grow rapidly, flower early and even shorten the grain
filling period in field crops to complete the life cycle [104-107].
Such a redirection of nutrient flow from vegetative organs to
reproductive growth seems to be the norm during a plant’s
transition from vegetative to reproductive growth [68]. It is also
known that generation of ROS-mediated HR (as a response to
a stress or a pathogen attack) causes a shift in cellular
metabolism for resource re-allocation [40,108], involving global
changes in gene expression [109,110]. Thus, a heightened
defense response of a plant contributes to the fitness cost, as
seen during JA-dependent defense against herbivores [111]
and pathogenesis [112,113]. In our study, the expression of
msrA3 in potato suppressed ROS (and HR) and prevented the
induction of a number of gene transcripts analyzed,
characteristics that were associated with an extended
vegetative growth, delayed floral development, and higher
tuber yield. By extrapolation to studies in the literature, we
suggest that the delayed allocation of resources for
reproductive growth translated into an increased tuber yield in
the transgenics. Therefore, a dual action of MsrA3 involving
stemming of the pathogen growth and maintaining a lower
basal oxidative stress may contribute to enhanced productivity
in plants. Since resource reallocation involves a global shift in
the levels of hormones IAA and GA and/or nutrient balance
[68], we suggest that MsrA3 function may influence these
processes.

Based on the literature on plant defense responses and the
findings here on the suppression of these responses by an
ectopically expressed AMP, MsrA3, a working model is
proposed (Figure 7). Plants respond to biotic and abiotic
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challenges by causing a burst of ROS that marks the induction
of HR [24]. These species through a network of signaling
involving NO, ethylene, JA and SA lead to comprehensive
changes in gene expression responsible for the synthesis of a
multitude of defense-related compounds utilizing plant
resources [109]. The lack of oxidative burst, lower levels of
H2O2, and early suppression of gene transcription, shown here
for msrA3 transgenics, in response to different stressors
indicate that MsrA3 functions upstream of these processes.

This is consistent with the suggestion that downstream the
onset of stress recognition patterns the two types of stress
response pathways converge [27]. Future research in this
arena should throw light on the mechanisms and factors
involved. Finally, the data presented here show that
antimicrobial peptide-based defense (immunity) is associated
with longevity of potato plants via mechanisms that bypass
ROS and HR signaling.
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Figure 7.  Illustration of pathways and processes in transgenic potato impacted by the expression of the antimicrobial
peptide MsrA3.  (A) Represents the hypersensitive response (HR) against biotic stress, outlined within a purple oval shape. Plants
respond to a pathogen (heptagonals) by triggering pathogen-associated molecular patterns (PAMPs) and receptor-like-kinases
(RLKs), which cause HR involving reactive oxygen species (ROS) signaling. Some pathogens secrete ‘effectors’ (shaded triangles)
to suppress the PAMP-RLK mediated defense response [18]. Plants also synthesize resistance proteins (R-proteins) that recognize
the effectors and induce immunity leading to ROS production [18]. The HR, often culminating in cell death, accompanies the
activation of defense pathways utilizing energy and other plant resources. (B) Represents defense response against abiotic
stresses, outlined within a brown oval shape bordered, where it partly overlaps with HR-mediated biotic defense. Abiotic stress
stimulus is perceived by plant factors that in turn trigger the synthesis of ROS likely through the same pathway as the biotic defense
response [27]. In this scenario too, stress resistance/tolerance involves activation of defense pathways, utilizing energy and other
resources of the host plant. (C) and (D) Highlight MsrA3-protein defense against the pathogen causing its membrane lysis and
death [38]. MsrA3 does not activate the HR and suppresses the oxidative burst (red T’s) (this paper). MsrA3 may impact other biotic
and abiotic stresses (blue arrows with black boarder). By mitigating plant’s normal defense pathways, MsrA3 presence helps
channel the cellular resources including energy for more growth and higher yield.
doi: 10.1371/journal.pone.0077505.g007
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