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Abstract

The fucose binding lectin LecB affects biofilm formation and is involved in pathogenicity of Pseudomonas aeruginosa. LecB
resides in the outer membrane and can be released specifically by treatment of an outer membrane fraction with fucose
suggesting that it binds to specific ligands. Here, we report that LecB binds to the outer membrane protein OprF. In an
OprF-deficient P. aeruginosa mutant, LecB is no longer detectable in the membrane but instead in the culture supernatant
indicating a specific interaction between LecB and OprF.
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Introduction

Lectins are proteins of non-immune origin that recognize and

bind to specific carbohydrate structural epitopes. This group of

carbohydrate-binding proteins function as central mediators of

information transfer in biological systems and perform their duties

by interacting with glycoproteins, glycolipids and oligosaccharides

[1]. They are found in a wide range of organisms including viruses,

bacteria, plants and animals, and are believed to play an important

role in cell-cell interactions [2]. Bacteria possess several different

types of lectins [3], including for example FimH which is located at

the top of type 1 pili from the uropathogenic Escherichia coli and

recognizes terminally located D-mannose moieties on cell-bound

glycoproteins mediating adhesion between the bacterium and the

urothelium [4,5]. Furthermore, lectins may have a significant

biotechnological and medical potential, as exemplified by the

galactoside-specific mistletoe lectin, which is used on a large scale

to support anti-cancer therapy [6].

P. aeruginosa, an opportunistic pathogen associated with chronic

airway infections, synthesizes two lectins LecA and LecB (formerly

named PA-IL and PA-IIL) [7]. Strains of P. aeruginosa that

produces high levels of these virulence factors exhibit an increased

virulence potential [8]. Both lectins play a prominent role in

human infections, since it was demonstrated that P. aeruginosa-

induced otitis externa diffusa [9], as well as respiratory tract

infections [10] including those in cystic fibrosis (CF) patients [11],

could be successfully treated by application of a solution contain-

ing LecA and LecB- specific sugars. The sugar solutions pre-

sumably prevented the lectin-mediated bacterial adhesion to the

corresponding host cells.

The expression of lectin genes in P. aeruginosa is coordinately

regulated with certain other virulence factors and controlled via

quorum sensing and by the alternative sigma factor RpoS [12].

LecB consists of four 11.73 kDa subunits, each exhibiting a high

binding constant for L-fucose (KD=1.56106 M21) and its

derivatives [13,14] and a somewhat lower binding constant for

D-mannose (KD= 3.16102 M21). The crystal structure of LecB

purified from E. coli showed a tetrameric organisation of the

protein stabilized by Ca-ions with four sugar binding sites each

composed of residues from two subunits [15,16,17]. Recently, we

have demonstrated the N-glycosylation of LecB which appears to

be required for proper transport to its final destination on the cell

surface of P. aeruginosa [14].

In CF patients, increased terminal fucosylation of airway

epithelial glycoproteins is found, as well as a higher percentage

of sialylated and sulfated oligosaccharides in Lewis A oligosaccha-

ride side chains, which presumably represent preferential ligands

for LecB [16] thereby contributing significantly to chronic

respiratory P. aeruginosa infections [18]. Interestingly, LecA and

LecB also inhibit ciliary beating [19] which represents an

important defence mechanism of the lung [20,21]. It was

suggested that LecB is exposed on the surface of sessile P. aeruginosa

cells, since the addition of L-fucose-branched chitosan led to

specific cell aggregation [22]. In addition, it was shown that LecB

is located in the bacterial outer membrane and a lecB-deficient P.

aeruginosa strain is impaired in biofilm formation [23]. Addition of
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glycopeptide dendrimers targeting LecB resulted in complete

inhibition and dispersion of biofilms, which clearly marks this

lectin as a valuable target for developing P. aeruginosa biofilm

inhibitors [24,25]. LecB is also involved in the assembly of pili on

the cell surface and in the production protease IV [26].

Cell surface appendages of P. aeruginosa, like pilus and flagella

function as adhesins that bind to receptors, e.g. those present on

the respiratory epithelium, thus initiating bacterial adherence

[27,28,29]. The outer membrane protein OprF has been identified

as an adhesin for human alveolar epithelial (A549) cells [30]. OprF

is a major outer membrane porin forming a non-specific, weakly

cation-selective channel with two different channel sizes

[31,32,33]. Interestingly, full length OprF is required for the

formation of large pores whereas C-terminal truncations only form

smaller sized pores [34] suggesting that OprF can adopt different

conformations [35]. Furthermore, OprF plays an important role in

antimicrobial drug resistance and has also been suggested as

a vaccine component [36]. Gene disruption and gene deletion

analyses have indicated that it is also required for cell growth in

low-osmolarity medium, the maintenance of cell shape and

peptidoglycan association [35].

In this paper we report that LecB is exposed on the surface of

sessile P. aeruginosa cells where it interacts with the outer membrane

porin OprF. Treatment of biofilm cells with L-fucose resulted in

the release of LecB, whereas treatment with D-galactose had no

effect. The interaction of LecB with OprF was directly demon-

strated using N-terminal His-tagged LecB immobilized on Ni-

NTA agarose and by affinity chromatography on a mannose

agarose column, which resulted in co-purification of LecB and

OprF. We furthermore observed that an OprF-deficient P.

aeruginosa mutant secretes LecB into the culture medium indicating

that this lectin binds to OprF on the bacterial cell surface.

Experimental Procedures

Animals and Ethics Statement
Animal blood used in this study was purchased from Fiebig

Nährstofftechnik (Idstein-Niederauroff/Ts, Germany). The com-

pany is licensed to produce animal blood samples for diagnostic

and biotechnology use by the regional council of Darmstadt

(Germany), in accordance to chapter IV article 18 Abs. 1 of decree

(EG) Nr. 1774/2002 under control of veterinary control number

DE 06 439 0001 14.

Bacterial Strains and Plasmids
The strains and plasmids used in this study are listed in Table 1.

E. coli was used for cloning experiments and E. coli BL21(DE3) as

a heterologous expression host for plasmid encoded LecB. E. coli S-

17 was used for conjugal transfer.

Media and Growth Conditions
Pre-cultures for all experiments were prepared overnight in

10 ml LB medium at 37uC. Plasmid-carrying E. coli cells were

selected with 100 mg ampicillin ml21 and 50 mg chloramphenicol

ml21. In the case of plasmid- or cassette-carrying P. aeruginosa

strains, 300 mg chloramphenicol ml21, 50 mg gentamicin ml21

and/or 500 mg streptomycin ml21 were added.

P. aeruginosa cells were grown as unsaturated biofilms on NB-

agar plates for 48 h at 37uC and bacterial cells were isolated by

washing with PBS and subsequent centrifugation for 10 min at

3,0006g.

Overexpression of lecB and lecB::his6
Expression cultures were grown at 37uC in 1 L of LB medium

containing 0.4 % (w/v) glucose in 5 L Erlenmeyer flasks to an

absorbance of 0.6, and then induced with 1 mM isopropyl-ß-D-

thiogalactoside (IPTG). After 16 h of growth cells were harvested

by centrifugation at 3000 g for 10 min and suspended in 100 ml of

100 mM Tris-HCl buffer (pH 8.0).

Purification of LecB and LecB-His6 by Affinity
Chromatography
LecB and the His-tagged LecB were purified as described

previously [15,37]. In brief, bacterial cells were disrupted by

freezing for at least 1 h at 220uC and subsequent sonication. The

lysate was centrifuged at 10,0006g for 30 min, and the following

steps were carried out at 37uC. The supernatant obtained after

centrifugation was loaded onto a mannose agarose column (Sigma,

volume 10 ml). After washing the column with 100 ml 100 mM

Tris-HCl (pH 8.0), containing 150 mM NaCl, the bound protein

was eluted with 20 ml of 20 mM D-mannose in 100 mM Tris-

HCL (pH 8.0). The sample was concentrated by ultrafiltration

using Vivaspin 20 microconcentrators (molecular weight cut-off:

5 kDa; Sartorius AG, Goettingen, Germany) and then washed

with Millipore-pure water. The purified protein was stored at

220uC.

Purification of OprF
OprF was purified to homogeneity from P. aeruginosa exactly as

reported previously for E. coli (Brinkman et al., 2000).

Peroxidase Labeling of LecB
Peroxidase labeled LecB was prepared using glutaraldehyde

coupling as described previously [38,39,40]: 1.5 mg of purified

lectin and 3 mg of peroxidase (from horseradish, Sigma) were

dissolved in 1 ml of 0.1 M phosphate buffer (pH 6.8) and mixed

with 0.03 ml of a 1% glutaraldehyde solution for 3 h at room

temperature. The mixture was then sequentially dialyzed against

the same phosphate buffer for 2 h, against phosphate buffer

containing 2 mg glycine/mL overnight, and several changes of

phosphate-buffered saline (PBS) for 6 h. The labelled lectin sample

was finally centrifuged at 30,0006g for 15 min to remove

aggregates.

Release of LecB from P. aeruginosa Cells by Washing with
L-fucose
P. aeruginosa PAO1 containing plasmid pBBC2 was grown on

NB agar plates at 37uC for 48 h. Bacterial cells (12 mg dry weight)

were washed off with 20 ml PBS and then centrifuged for 10 min

at 3,0006g. The cell pellet was washed three times in PBS and the

cells were resuspended in PBS containing 20 mM L-fucose (Sigma)

or 20 mM D-galactose (Sigma) as a negative control, and

incubated for 1 h at 4uC. After centrifugation for 10 min at

3,0006g the sterile-filtered supernatant and an amount of the cell

pellet equivalent to an OD at 580 nm of 0.15 were analyzed by

Western blotting.

Cell Fractionation of P. aeruginosa [23]
P. aeruginosa strains PAO1 and H636 containing plasmid pBBC2

and P. aeruginosa PAO1 without plasmid were grown on NB agar

plates at 37uC for 48 h. Bacterial cells (1.2 mg dry weight) were

washed off with 1 ml 0.14 M NaCl and then centrifuged at

3000 g; the supernatant was sterile-filtered and used to determine

the amount of extracellular LecB. The cell pellet was carefully

suspended in 240 ml 100 mM Tris-HCl (pH 8) containing 20 %
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(w/v) sucrose. After addition of 240 ml of the same buffer

containing 5 mM EDTA and 20 mg lysozyme, the sample was

incubated for 30 min at room temperature, spheroplasts were

collected by centrifugation at 10.000 g for 20 min and the

supernatant was used as the periplasmic fraction. Spheroplasts

were disrupted by sonication (Sonifier W250; Branson) in 240 ml
100 mM Tris-HCl (pH 8). After centrifugation for 5 min at

5,0006g to remove undisrupted cells and cell debris, the total

membrane fraction was collected by centrifugation for 45 min at

13,0006g and the supernatant was used as the cytoplasmic

fraction. An amount equivalent to a cell density of an O.D.580 nm

of 0.5 of each fraction was used for Western blotting.

Outer Membrane Isolation
Outer membranes were isolated by a modification of the

method described previously [41]. P. aeruginosa PATI2 cells

(500 mg dry weight) were harvested after growth for 48 h at

37uC by centrifugation at 3000 g for 10 min. The cells were

resuspended in 200 ml 100 mM Tris-HCl (pH 8) containing

10 mg lysozyme, incubated for 30 min at 37uC and disrupted by

three passages through a French press. Intact cells were separated

from the cell extract by centrifugation at 5,0006g for 10 min. The

supernatant was centrifuged at 13,0006g for 1 h. The pellet,

consisting of the total membrane fraction, was resuspended in

10 ml 100 mM Tris-HCl (pH 8) containing 2 % lauryl sarcosinate

and incubated at room temperature for 20 min. After centrifuga-

tion for 40 min to at 45.000 g the pellet consisting of the outer

membrane fraction was resuspended in 100 mM Tris-HCl

(pH 8.0).

Isolation of LecB Ligands by Affinity Chromatography on
D-mannose-agarose
P. aeruginosa PAO1 was grown in 0.5 l NB-medium at 37uC for

48 h. Bacterial cells were centrifuged at 3000 g for 10 min, the cell

pellet was suspended in 20 ml 100 mM Tris-HCl and disrupted by

freezing for at least 1 h at 220uC and subsequent sonication. The

lysate was centrifuged at 10,0006g for 30 min, and the following

steps were carried out at 37uC. Cleared cell extract was loaded on

a mannose agarose column (Sigma, volume 5 ml). After washing

the column with 30 ml 100 mM Tris-HCl (pH 8.0) containing

150 mM NaCl, the bound protein was eluted with 10 ml of

20 mM mannose in 100 mM Tris-HCL (pH 8.0). As a negative

control, the same experiment was carried out with the lecB-

deficient P. aeruginosa mutant PATI2. One ml each of the eluates

was analyzed by SDS-PAGE, 2-D-gel electrophoresis and

MALDI-TOF mass spectrometry.

Isolation of LecB Ligands from the Outer Membrane
The isolation procedure was carried out at 37uC. The outer

membrane fraction was incubated in 100 mM Tris-HCl contain-

ing 2 mg His-tagged LecB for 1 h. After loading the sample onto

a Ni-NTA-agarose column (Quiagen, volume 5 ml)), the column

was washed with 50 ml Tris-HCl (pH 8.0) containing 50 mM

imidazole and 300 mM NaCl to remove non-specifically bound

proteins. LecB binding proteins were eluted with 5 ml 100 mM

Tris-HCl containing 20 mM L-fucose. 1 ml of the sample was

analyzed by 2-D-gel electrophoresis and MALDI-TOF mass

spectrometry.

SDS-PAGE and 2 D Gel Electrophoresis
Prior to SDS-PAGE, samples were suspended in SDS-PAGE

sample buffer, boiled for 5 min at 99uC and loaded onto an SDS-

16% polyacrylamide gel. SDS-gel electrophoresis was run for 1 h

at 200 V. For 2 D gel electrophoresis, the proteins were

precipitated overnight with 20% (v/v) TCA and afterwards

washed twice with acetone. The protein preparation was air dried

and resuspended in 1 ml rehydration buffer (7 M urea, 2 M

thiourea, 4% (w/v) 3-[(3-cholamidopropyl) dimethylammonio]-1-

propanesulfonate (CHAPS), 2% IPG buffer and pH 3–11

negative-logarithmic stripes as recommended by the manufacturer

(GE-Healthcare, Freiburg, Germany), 1% (v/v) bromphenol blue).

Protein was loaded onto an IPG strip and isoelectric focusing was

performed at a maximum voltage of 8,000 V. The second

dimension SDS-gel electrophoresis was run for 3 h in a 12.5%

polyacrylamide gel at 250 V. Afterwards, the gels were stained

with Coomassie Brilliant Blue G250.

Western Blotting
Proteins from 1-D-gels were electrophoretically transferred at

150 mA for 15 min, and at 300 mA for 20 min onto PVDF

membranes (Bio-Rad). Electrophoretic transfer from 2-D-gels to

PVDF membranes was performed by semi-dry blotting as

Table 1. Bacterial strains and plasmids.

Strain/Plasmid Genotype/Phenotype Reference/source

Strains

P. aeruginosa

PAO1 wilde-type 60

PATI2 LecB mutant strain derived from PAO1. lecB::Gmr 23

H636 OprF mutant strain derived from PAO1. oprF::Strepr 35

E. coli

BL21(DE3) F2 ompT hsdSB(rB 2 mB 2 ) gal dcm (lcIts857 ind1 Sam7 nin5 lacUV5-T7 gene1) 61

S17.1 Ec294 : : [RP4-2 (Tc : : Mu) (Km : : Tn7)], pro, res, recA, tra+, Tpr , Sm 62

Plasmids

pEC2 pET22b containing the 345 bp NdeI/BamHI PCR product with the lecB gene 15

pURE pET19 containing the coding regions for a hexahistidin tag, an entrokinase cleavagesite
and the LecB protein

37

pBBC2 pBBR1MCS containing a 398 bp XbaI/SacI fragment with lecB derived from pEC2 23

doi:10.1371/journal.pone.0046857.t001

Lectin LecB Interacts with Porin OprF

PLOS ONE | www.plosone.org 3 October 2012 | Volume 7 | Issue 10 | e46857



described before [42]. The membranes were blocked with 3 % (w/

v) BSA overnight at 4uC. LecB, EstA and DsbA were detected by

incubating the membranes with specific polyclonal antibodies

[43,44,45] at a dilution of 1:20,000, 1:85,000 and 1:100,000 in

TBST (25 mM Tris-HCl, pH 8, 150 mM NaCl, 3 mM KCl,

0.2% v/v Tween 20), respectively, followed by an anti-rabbit

immunoglobulin G-horseradish peroxidase conjugate (Bio-Rad).

The blots were developed with the ECL chemiluminescence kit

(GE Healthcare). For detection of LecB ligands, the membranes

were incubated either with 1 mg6ml21 purified LecB protein in

10 mM TBS containing 3% bovine serum albumin (Fluka) 0.05%

Tween 20 (ROTH) before exposure to the antibodies as described

above or with 1 mg/ml peroxidase labelled LecB. The blots were

developed with the ECL chemiluminescence kit (GE Healthcare).

Glucose-6-phosphate Dehydrogenase Assay
Glucose-6-phosphate dehydrogenase was used as a cytoplasmic

marker enzyme [8,46]. A stock solution of NADP (45 mM) and

a stock solution of glucose-6-phosphate (110 mM) were diluted

1:100 in a buffer containing 55 mM Tris-HCl (pH 7.5) and

11 mM MgCl. A 900 ml volume of this test solution was mixed

with 100 ml of a sample from cytoplasm, periplasm, membrane

fraction and supernatant, respectively, and the decrease in optical

density (OD340/min) was monitored spectrophotometrically at

30uC for 90 sec.

Protein Identification by MALDI-MS
Spots of interest were excised from polyacrylamide gels and

digested overnight with Trypsin Gold (Promega, USA) and eluted

as described by Shevchenko et al. [47]. The diluted proteins were

desalted if necessary with ZipTip C18 (Millipore, USA) and

spotted on Prespotted AnchorChip (Bruker, Germany) with

a HCCA (á-cyano-4-hydroxycinnamic acid) matrix. The masses

of the peptides were determined with an UltraflexIII system

(Bruker, Germany). Database search was carried out witch

MASCOT ([48]; www.matrixscience.com).

Hemagglutination Assay
Rabbit red blood cells (Fiebig Nährstofftechnik, Germany)

(RBC) were collected, washed three times in PBS and resuspended

to a final concentration of 5% (v/v). The erythrocyte suspension

was diluted 9:1 with PBS buffer containing papain (1 % (w/v) and

L-cysteine (0.1 % (w/v)) and incubated for 1 h at 37uC.
Afterwards, the suspension was washed three times in PBS and

50 ml were mixed with 50 ml of PBS containing P. aeruginosa cells.

P. aeruginosa was grown on NB Agar for 48 h by 37uC. Bacterial
cells were washed off with 1 ml 0.14 M NaCl and cells were

isolated by centrifugation (10 min.; 30006g) and the pellets

washed three times with PBS and afterwards resuspended in 50 ml
PBS. After incubation for 1 h at 37uC, the erythrocytes were

sedimented by centrifugation (30 sec at 10006g at room

temperature) and the hemagglutination optically examined.

Results

LecB is Bound to the Surface of Biofilm Cells
LecB can bind specific ligands located at the cell surface of P.

aeruginosa [23] and biofilm formation can completely be inhibited

by LecB specific fucosyl-peptide dendrimers [24]. These observa-

tions prompted us to investigate the location of LecB on the

surface of P. aeruginosa cells grown as a biofilm. To this end, P.

aeruginosa PAO1 harbouring plasmid pBBC2 which contains the

wild-type lecB gene under the transcriptional control of a consti-

tutive lac promoter was grown as a biofilm on the surface of NB

agar for 48 h. Growing bacteria on leaf and food surfaces, as

colonies, that have a continuous air-biofilm interface has been

shown to result in the formation of unsaturated biofilms [3,49,50]

of the type that is also found in the lungs of CF patients suffering

from P. aeruginosa infections. Under these growth conditions, LecB

is located in the bacterial outer membrane [23]. Cells were

incubated with 20 mM of the high affinity ligand L-fucose at 4uC
to release cell surface exposed LecB [14]. This low temperature

was chosen to decrease the affinity of LecB for the ligands, since

previous results had shown a minimal hemagglutination activity of

LecB at 4uC [43]. Cells and supernatant were separated by

centrifugation and analysed by SDS-PAGE and subsequent

Western-blotting using antiserum directed against LecB [23] and

DsbA [51], with the latter serving as a control to monitor whether

cell lysis had occurred during fucose treatment. Fucose treatment

led to the release of LecB, but not of DsbA into the supernatant,

whereas cells treated with D-galactose did not release any LecB

(Fig. 1). As expected, DsbA was detected only in the cell pellet

fraction (Fig. 1).

LecB Interacts with the Outer Membrane Porin OprF
The finding that LecB could be released from the cell surface of

P. aeruginosa encouraged us to search for putative LecB ligands. P.

aeruginosa PAO1 was grown as an unsaturated biofilm on the

surface of NB agar, the membrane fraction was isolated using

differential cell fractionation and proteins were analysed by SDS-

PAGE and subsequent Far-Western-blotting using purified LecB

protein and a LecB-specific antiserum. Several immunoreactive

bands could be identified in the membrane fraction representing

putative LecB ligands (Fig. 2A).

Putative LecB ligands were purified by affinity chromatography

on a mannose agarose matrix by utilizing the intrinsic specificity of

LecB for D-mannose. In accordance with the purification protocol

developed for LecB expressed in E. coli [15,37], purification was

carried out at 37uC. P. aeruginosa PAO1 cells grown in NB medium

for 48 h were disrupted by sonication and the cell lysate was

loaded onto a D-mannose agarose column. After washing the

column, bound proteins were eluted with 100 mM Tris-buffer

containing 20 mMD-mannose and analysed by SDS-PAGE (Fig. 2

B). As a negative control, the same experiment was performed

using the lecB deficient mutant P. aeruginosa PATI2. LecB itself and

two additional proteins with an apparent molecular mass in the

range of 35 kDa were detected, further separated by two-

dimensional gel electrophoresis (Fig. 2 C) and the resulting spots

were identified by MALDI-TOF mass spectrometry as the outer

Figure 1. Release of LecB from the cell surface of P. aeruginosa.
Biofilm cells were incubated with 20 mM L-fucose for 1 h at 4uC. Cell
pellets (P) were separated from supernatants (S) by centrifugation and
LecB was detected in both fractions by immunoblotting. Cells treated
with 20 mM D-galactose served as a negative control. Additionally,
blots were incubated with an antiserum against the periplasmic protein
DsbA to monitor putative cell lysis during L-fucose treatment.
doi:10.1371/journal.pone.0046857.g001
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membrane porin OprF (PA1777) (sequence coverage 48%, mascot

score 328) and the putative glutaminase-asparaginase PA1337

(ansB) (sequence coverage 23%, mascot score 116). In contrast, cell

lysates obtained from the lecB-negative strain P. aeruginosa PATI2

did not contain any proteins which could be isolated by affinity

chromatography under these experimental conditions. Our

findings clearly indicate that LecB interacts with the outer

membrane porin OprF and the hypothetical protein PA1337.

The interaction between LecB and OprF was further investigated

by growing the lecB-deficient mutant P. aeruginosa PATI2 in NB

medium for 48 h, isolation of the outer membrane and incubation

with purified N-terminal His-tagged LecB. The preparation was

loaded onto a Ni-NTA-agarose column to immobilize putative

lectin-ligand complexes. After washing the column, proteins were

eluted by washing with Tris-HCl buffer containing 20 mM L-

fucose and eluted proteins were analysed by 2-DE (data not

shown). A single spot was detected and the respective protein was

identified by MALDI-TOF mass spectrometry as OprF. Elution of

OprF upon addition of fucose indicated that the interaction of

LecB and OprF was specific and further suggested that OprF itself

may be glycosylated. A specific interaction between OprF and

LecB was confirmed by transferring the eluted OprF to a blotting

membrane and subsequent treatment with peroxidase-labelled

LecB. Again, binding of LecB to OprF could be demonstrated

(data not shown).

LecB Binds OprF on the Cell Surface of P. aeruginosa
Apparently, LecB is cell surface exposed and interacts with

OprF via carbohydrate ligands. We further investigated this

interaction by growing the oprF-deficient P. aeruginosa mutant H636

which harboured plasmid pBBC2 containing the lecB gene as an

unsaturated biofilm on the surface of NB agar. After differential

cell fractionation proteins were analysed by SDS-PAGE and

Western-blotting, the wild-type strain P. aeruginosa PAO1 served as

a negative control. Interestingly, LecB was detected in the

cytoplasm and in the periplasm as well as in the culture

supernatant of the oprF-deficient strain, whereas in the wild-type

strain, LecB was detected only in the cytoplasm and in the

membrane fraction (Fig. 3). The release of LecB into the culture

supernatant and its absence from the outer membrane fraction in

the OprF deficient mutant strongly suggests a specific interaction

between LecB and OprF in the outer membrane of P. aeruginosa.

OprF is Needed for Hemagglutination Activity of P.
aeruginosa
Lectins mediate the agglutination of erythrocytes caused by P.

aeruginosa via interaction with specific sugar molecules on the

surface of blood cells [52]. Our results described above suggested

that the deletion of the oprF gene may affect the hemagglutination

activity of the respective P. aeruginosa mutant. To test this

assumption, erythrocyte cells were incubated for 1 h with P.

aeruginosa PAO1 wild type, DlecB and DoprF mutants and

agglutination was optically examined (Fig. 4). As expected, P.

aeruginosa wild-type cells showed strong hemagglutination activity,

whereas mutant strains P. aeruginosa lecB as well as oprF caused

a significantly decreased agglutination. Purified LecB served as

a positive and PBS buffer as a negative control. The agglutination

caused by LecB as well as by wild-type P. aeruginosa cells could be

inhibited by the addition of 20 mM L-fucose to the sample buffer.

These results indicated that an interaction of the porin OprF and

Figure 2. Identification of LecB interaction partners in P. aeruginosa. A. Far-Western blot analysis of membrane fractions from P. aeruginosa
PAO1 using purified LecB and a LecB-specific antiserum. B. SDS-PAGE analysis of putative LecB ligands isolated from cell lysates of P. aeruginosa
PAO1. Proteins were purified by affinity chromatography on mannose agarose, the column washed with 100 mM Tris-HCl (pH 8) and proteins eluted
with 20 mM mannose in 100 mM Tris-HCl (pH 8) The lecB deficient mutant P. aeruginosa PATI2 served as a negative control. C.2D electrophoretic
separation of protein bands shown in Fig. 2B; spots were subsequently analysed by MALDI-TOF mass spectrometry and identified as OprF and
PA1337.
doi:10.1371/journal.pone.0046857.g002
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the lectin LecB in the outer membrane is required to mediate

agglutination of red blood cells caused by P. aeruginosa.

Discussion

P. aeruginosa is the major pathogen in the respiratory tract of

patients suffering from cystic fibrosis. The treatment of these

chronic P. aeruginosa airway infections is difficult due to the innate

and adaptive antibiotic resistance of P. aeruginosa and the formation

of biofilms on the respiratory epithelium [44,53]. The lectin LecB

and the major outer membrane porin OprF have both been shown

to be involved in adhesion to lung epithelial cells [30,54]. Our

study now demonstrates that LecB is bound to the bacterial outer

membrane and interacts with OprF. In an earlier study, we

already showed that LecB is localized in the bacterial outer

membrane of P. aeruginosa biofilm cells [23], but it remained

unclear whether it faces the periplasm or the exterior. In this study,

we washed biofilm cells with L-fucose which binds LecB with

a high affinity (KD= 1.56106 M21) [14] and we observed the

release of LecB from the cell surface. Further analysis of

membrane fractions by Far-Western-blotting using purified LecB

detected several putative LecB ligands. These results already

indicated that LecB specifically interacts with glycoproteins

present in the bacterial membrane. The major outer membrane

porin OprF was then co-purified from wild-type P. aeruginosa using

affinity chromatography on mannose agarose indicating an in vivo

interaction of both proteins. The same method applied to a lecB-

deficient mutant of P. aeruginosa did not result in isolation of OprF.

Moreover, OprF could be isolated from the outer membrane

fraction by His-tagged LecB immobilized on Ni-NTA agarose and

could also be detected by affinity binding to peroxidase labelled

LecB. Apparently, co-purification of OprF depended on specific

binding to LecB which could be abrogated by subsequent washing

of the column with the LecB-specific sugar fucose. Efficient in vitro

binding of peroxidase labelled LecB to OprF blotted onto PVDF

membranes after SDS-PAGE clearly suggested that LecB recog-

nized OprF. So far, we failed to obtain any experimental evidence

for glycosylation of OprF. Hence, the mechanism of the

interaction between LecB and OprF remains unknown and

requires further investigation.

Carbohydrate blood group antigens present on the surface of

erythrocytes can bind to LecB and thereby cause hemagglutina-

tion. We have observed that a P. aeruginosa lecB deficient strain

showed a significantly decreased hemagglutination activity as

compared to the corresponding wild-type strain (Fig. 4). In-

terestingly, a P. aeruginosa oprF deletion mutant showed the same

decrease in hemagglutination activity which could not be in-

creased by expression of lecB from a plasmid. This result also

strongly suggests an interaction of LecB with OprF on the cell

surface of P. aeruginosa.

Interactions of lectins with cell surface proteins of pathogenic

bacteria have been reported before [55]. Lectins located at the tip

of pili or agella including PapG and GafD of uropathogenic E. coli

are referred to as adhesins, as they play a role in adherence to

epithelial cells [56]. In an earlier report, we demonstrated that

LecB is an important factor in the development of biofilms by P.

aeruginosa [23]. Furthermore, it was suggested that both LecB and

OprF contribute to bacterial adherence to A549 epithelial cells

[30,54]. As P. aeruginosa is toxic to epithelial cells [57], promotion

of adherence might manifest as increased cytotoxicity and

consequent lung epithelial destruction. Therefore, it is tempting

to speculate that LecB and OprF together may mediate adhesion

of P. aeruginosa to receptors located on cells of either the same or of

different species, thus enabling the colonization of host tissues as

well as the formation of mono- or multispecies biofilms. Previously,

it was reported that interferon gamma binds to OprF, resulting in

the expression of another quorum-sensing dependent virulence

determinant, the lectin LecA of P. aeruginosa. Interestingly,

a fucosyl-residue is required for recognition of human interferon

gamma by the receptor [58] suggesting that the fucose-specific

LecB may act as an adaptor to mediate recognition of this cytokine

by OprF on the bacterial surface. Thus, it would be interesting to

test whether this regulatory effect on lecA expression through

sensing of interferon gamma is still functional in a lecB-negative P.

aeruginosa mutant.

Figure 3. Subcellular localization of LecB in biofilm cells of the
oprF-deficient mutant P. aeruginosa H636 grown for 48 h at
37uC. A. The same amount of culture supernatant, periplasm,
cytoplasm and total membrane were subjected to SDS-PAGE analysis
followed by immunoblotting using LecB antiserum. Fractions obtained
from P. aeruginosa wild-type (wt) served as a positive control.
Fractionation controls: B. Cellular fractions were analyzed using antisera
directed against EstA (an outer membrane protein) and DsbA-(a
periplasmic protein) and C. by determination of relative glucose-6-
phosphate dehydrogenase (cytoplasmic protein) activities. The per-
centages of relative enzyme activities present in the cytoplasm (CP), the
periplasm (PP), the membrane fraction (MF) and the culture superna-
tant (SN) are shown.
doi:10.1371/journal.pone.0046857.g003
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In conclusion, our findings show that LecB and OprF are

interaction partners in vivo but OprF is not involved in LecB

secretion. Both proteins themselves have already been shown to

influence key virulence-associated functions of P. aeruginosa [59].

Hence, the interaction of these proteins may modulate their

individual functions and may even create novel functionalities

affecting pathogenicity of P. aeruginosa.
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