








To further validate the microarray results, the effect of 1037 on
processes related to biofilm formation (i.e., swimming, swarming,
and twitching motilities) was determined. Peptide 1037 reduced fla-
gella-dependent swimming motility in a broad-spectrum fashion, af-
fecting this type of motility in PA14, PAO1, and B. cenocepacia 4813
(Fig. 3). This is particularly interesting since flagella play a role both in

biofilm formation and swarming motility. Swarming motility, which
like biofilm formation is a complex adaptation dependent on flagellin
and quorum sensing (but otherwise quite distinct), was significantly
and nearly completely knocked down (P value of �0.001 by one-way
analysis of variance [ANOVA]) by the action of 1037 in both P.
aeruginosa and Burkholderia (Fig. 4).

FIG 1 Dose-dependent antibiofilm effect of 1037 on Gram-negative and Gram-positive bacteria. Different bacterial strains were grown under biofilm conditions
in the presence of 1037. After growth at 37°C for 22 h, biofilm growth was assessed by crystal violet staining and quantified at 595 nm. All experiments were done
at least 3 times, and statistical significance was determined using one-way ANOVA (no asterisk, P � 0.05; **, P � 0.01; ***, P � 0.001).

FIG 2 Flow cell analysis of P. aeruginosa PA14 biofilm formation in the absence and presence of 20 � g/ml 1037. P. aeruginosa biofilms were cultivated in minimal
medium for 72 h in the presence of 20 � g/ml of 1037 peptide at 37°C in flow chambers. Biofilms were stained and visualized using SYTO-9 to stain live biofilm
cells green and propidium iodide, a normally cell-impermeable stain, to stain dead cells red and examined by widefield fluorescence microscopy. The scale bar
represents 15 � m in length, and each panel shows xy, yz, and xz dimensions. (A to C) PA14 biofilm untreated. Images correspond to PA14 biofilm stained with
SYTO-9 (A), PA14 biofilm stained with propidium iodide (B), merged image (C). (D to F). PA14 biofilm treated with 20 � g/ml of 1037 peptide. Images
correspond to PA14 biofilm stained with SYTO-9 (D), PA14 biofilm stained with propidium iodide (E), and merged image (F).
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Pilus-mediated twitching motility involves the movement of
Pseudomonas on solid surfaces. Twitching motility has been
shown to be involved in the disassembly of biofilm structures (45,
56). Array results demonstrated that a gene required for twitching
motility (fimX) (25) was upregulated by more than 5-fold. Con-
sistent with this result, sub-MIC concentrations of 1037 signifi-
cantly (P value of �0.05 by one-way ANOVA) enhanced twitch-
ing motility by about 45% (Fig. 5).

Screening of genes dysregulated by the action of cationic
peptides LL-37 and 1037. Since 1037, like LL-37, is a cationic
amphipathic peptide with antibiofilm activity, we wondered
whether these peptides inhibited biofilms using similar mecha-
nisms. We therefore compared microarrays evaluating the effects
on P. aeruginosa biofilms of LL-37 (41) and 1037 (see Table S1 in
the supplemental material). A common set of 14 genes, out of
more than 400 dysregulated genes, was found to be dysregulated
in biofilms treated with either peptide, including 10 downregu-
lated genes and 4 upregulated genes (Fig. 6). To assess the involve-
ment of these genes in biofilm formation, transposon mutants in
each gene were grown in static biofilm cultures. Among the down-

regulated genes, mutants in all but one (PA2781) exhibited vari-
ous deficiencies in biofilm formation by 13 to 83% (Fig. 6A).
Prominent biofilm deficiency phenotypes were found for mutants
in the nitrogen metabolism gene PA0519, the flagella gene flgB
(PA1077), and particularly in a gene predicted to be a probable
ABC transporter binding protein (PA2204). Mutants correspond-
ing to the upregulated genes were also grown in static cultures to
determine their biofilm phenotypes. Two mutants demonstrated
significantly increased biomasses (PA3234 and PA4454) com-
pared to that of the wild-type strain (Fig. 6B).

DISCUSSION

The objective of the present study was to identify a very short
peptide with full antibiofilm capability. Here, we identified a novel
9-amino-acid peptide, 1037, capable of knocking down bacterial
biofilms. By comparing the primary structures of a series of pep-
tides that exhibited reasonable antibiofilm activity (Table 1), a
consensus amphipathic sequence (FRIRVRV) was identified, with
3 cationic residues (i.e., R) and 4 hydrophobic amino acids, anal-
ogous to host defense peptides.

TABLE 3 Selected P. aeruginosa genes dysregulated by 1037 in biofilms

Probe ID by type Gene Protein Fold change P value

Flagella
PA1077 flgB Flagellar basal-body rod protein FlgB �3.84 5E�08
PA1078 flgC Flagellar basal-body rod protein FlgC �2.19 0.0002
PA1079 flgD Flagellar basal-body rod modification protein �2.52 0.0002
PA1081 flgF Flagellar basal-body rod protein FlgF �2.27 0.01

Chemotaxis
PA4953 motB Chemotaxis protein MotB 6.06 0.003
PA0176 aer2 Aerotaxis transducer Aer2 3.64 0.03
PA1608 PA1608 Probable chemotaxis transducer 8.05 0.0005
PA2788 PA2788 Probable chemotaxis transducer 2.28 0.05
PA3704 wspE Probable chemotaxis sensor/effector fusion 4.85 0.008

Anaerobic
growth
PA0519 nirS Nitrite reductase precursor �3.56 0.004
PA0523 norC Nitric-oxide reductase subunit C �11.51 5E�08
PA3392 nosZ Nitrous-oxide reductase precursor �4.71 0.01

Others
PA4959 fimX Type IV pilus assembly 5.49 0.004
PA3361 lecB Fucose-binding lectin PA-IIL �4.79 0.007
PA4479 mreD Rod-shape-determining protein MreD 4.43 0.007
PA5053 hslV Heat shock protein HslV 11.84 4E�05
PA3478 rhlB Rhamnosyltransferase chain B �3.45 0.005
PA4230 pchB Salicylate biosynthesis protein PchB �2.64 0.03
PA4228 pchD Pyochelin biosynthesis protein PchD �2.88 0.001
PA4226 pchE Dihydroaeruginoic acid synthetase �2.70 0.03
PA1202 PA1202 Probable hydrolase �2.41 0.026
PA2145 PA2145 Hypothetical protein �3.28 0.047
PA2204 PA2204 Probable binding protein of ABC transporter �3.58 0.0023
PA2330 PA2330 Hypothetical protein �3.93 0.035
PA2781 PA2781 Hypothetical protein �2.17 0.038
PA3369 PA3369 Hypothetical protein �7.93 2.5E�08
PA4739 PA4739 Hypothetical protein �5.31 2E�07
PA0267 PA0267 Hypothetical protein 3.57 0.033
PA3234 actP Probable sodium-solute symporter 2.73 0.0164
PA3903 prfC Peptide chain release factor 3 8.57 0.0003
PA4454 PA4454 Hypothetical protein 4.77 0.009
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Interestingly, 1037, one of the smallest peptides that we de-
signed, was found to have the most potent antibiofilm activity
(Table 1). Indeed, levels of 1037 more than 30-fold lower than the
MIC for planktonic cells were able to significantly reduce biofilm

formation in both Gram-negative (P. aeruginosa, B. cenocepacia)
and Gram-positive (L. monocytogenes) bacteria (Table 2; Fig. 1).

Intriguingly, 1037, as well as altering the thickness and mor-
phology of biofilms, led to a decreased number of biofilm cells of
P. aeruginosa (Fig. 2), even though, paradoxically, it failed to show
significant direct antimicrobial activity against planktonic cells

FIG 3 Swimming motility in the presence of 1037. Swimming motility was evaluated on LB plates containing 0.3% (wt/vol) agar and different concentrations
of 1037. The diameters (in cm) of the swim zones were measured after incubation for 20 h at 37°C. All experiments were done at least 3 times, and statistical
significance was determined using one-way ANOVA (no asterisk, P � 0.05; *, P � 0.05; **, P � 0.01; ***, P � 0.001).

FIG 4 Bacterial swarming in the presence of 1037. Swarming was examined on
BM2-swarm plates containing 0.5% (wt/vol) agar (Difco) after incubation for
20 h at 37°C. Swarming colonies were quantified as described in Materials and
Methods. All experiments were done at least 3 times, and statistical significance
was determined using one-way ANOVA (***, P � 0.001).

FIG 5 Twitching motility of P. aeruginosa PA14 in the presence of 1037. P.
aeruginosa cells were spot inoculated on LB plates with 1% (wt/vol) agar and
increasing concentrations of 1037. Twitching motility was determined by mea-
suring the diameter of the twitching zones after 24 h of incubation at 37°C.
Four independent experiments were performed, and statistical significance
was determined using one-way ANOVA (*,P � 0.05).

Novel Synthetic Peptide Inhibits Bacterial Biofilms

May 2012 Volume 56 Number 5 aac.asm.org 2701

 on A
pril 13, 2012 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org
http://aac.asm.org/


(Table 2). This indicates that the peptide is able to trigger uptake
of a normally impermeable stain, propidium iodide (usually in-
terpreted as cell death), or release of DNA to which it binds by
acting on a target that is either selectively expressed in biofilm cells
or is underexpressed and thus more susceptible to inhibition. Ta-
ble S1 in the supplemental material and Fig. 6 present a large
number of candidate genes, but given the penchant of the antimi-
crobial peptides to demonstrate multiple targets, including cell
membranes, cell wall biosynthesis, RNA, protein and DNA syn-
thesis, cell division, autolytic enzymes, and inhibition of particular
enzymes (14), it is likely that such a mechanism will be quite
complex. The lack of large amounts of propidium iodide staining
DNA outside the biofilm cells suggested that the peptide might not
be inducing cell lysis but rather might be compromising the cyto-
plasmic membrane, as indicated by the presence of propidium
iodide inside a subset of the cells (Fig. 2).

Cationic peptides are known to be able to freely translocate
into cells (15, 49), bind to DNA in a sequence-specific manner (16,
63), and directly alter gene expression (this and LL-37 papers).
Using microarray technology and in vitro assays, it was demon-
strated here that very low concentrations of 1037 affected the
development of biofilms in a variety of ways. First, flagellum-de-
pendent swimming motility was reduced in a concentration-de-
pendent manner (Fig. 3). Inhibition of swimming motility might

limit the number of bacterial cells reaching the surface, therefore
decreasing biofilm formation (3, 26, 30). Second, 1037 potently
inhibited bacterial swarming (Fig. 4), which is known (in a nutri-
tionally conditional fashion) to impact on (55) and share (3, 42)
regulatory relationships with biofilm formation. As swarming
cells are thought to be relevant to growth on mucosal surfaces
and demonstrate increased resistance to antimicrobial agents
and overproduction of virulence factors (5, 40), the anti-
swarming effect of 1037 might contribute to its potential ther-
apeutic value. Importantly, the antiswimming and antiswarm-
ing properties of 1037 were not observed with LL-37 (C. de la
Fuente-Núñez and R. E. W. Hancock, unpublished observa-
tions). Third, 1037 was found to stimulate twitching motility
(Fig. 5), a type of surface motility that promotes the disassem-
bly of biofilm structures (45, 56).

As expected, flagellar genes were downregulated, as were genes
(nirS, norC, and nosZ) known to play a role in anaerobic biofilm
developmental process by encoding proteins involved in anaero-
bic respiration (53, 64). Other downregulated genes involved in
biofilm formation included the quorum-sensing-regulated gene
rhlB, which is involved in rhamnolipid production (40, 54), and
the fucose-binding lectin gene lecB, which is required for biofilm
formation (23).

Since LL-37 served as a general model for the design of peptides
culminating in 1037, we questioned whether these peptides inhib-
ited biofilms in a similar manner. To answer this question, the
impact of 1037 on bacterial global gene expression was compared
with the LL-37 results previously reported by our lab (41). LL-37
causes upregulation of 311 genes and downregulation of 475
genes, while 1037 was found to induce the expression of 260 genes
and repress 138. However, only 10 genes were found to be down-
regulated by both peptides (Fig. 6A). Transposon mutants corre-
sponding to each gene were utilized to evaluate the potential im-
pact of decreased expression of these 10 genes on biofilm
formation. All but one of these mutants led to significant reduc-
tions in biofilm formation (Fig. 6A). Three mutants led to more
substantial biofilm deficiencies: an nirS mutant, consistent with a
role for anaerobic respiration in biofilm development (53, 64), the
flgB mutant in the flagellar basal body, and a gene encoding the
unknown ABC periplasmic transporter gene (PA2204).

On the other hand, 4 genes were upregulated by both LL-37
and 1037 (Fig. 6B). In this case, two mutants (PA3234 and
PA4454) grew significantly more biofilm than the control, consis-
tent with a role for these proteins in suppression of biofilm for-
mation. Indeed, a previous study showed that PA3234, a probable
sodium-solute symporter, was repressed in biofilms (60). More-
over, expression of the ABC superfamily gene yrbD (PA4454) is
known to gradually increase during biofilm formation (20). Inter-
estingly, PA4454 was also found to be upregulated in a biofilm-
deficient phoQ mutant (12). Taken together, our results indicate
that LL-37 and 1037 induce the dysregulation of relatively few
common genes, and this might imply that these dysregulated
genes likely play an active role in biofilm development that is an-
tagonized by their dysregulation by 1037.

In conclusion, we have demonstrated a small peptide, 1037,
that improves on the previously described antibiofilm activity of
its predecessor (LL-37) and additionally is able to inhibit another
complex adaptation, swarming motility. Despite its conceptual
similarity to antimicrobial peptides, results with 1037, confirmed
by results for other peptides, clearly demonstrated that direct an-

FIG 6 Mechanism of action of antibiofilm activity. Comparison of the LL-37
and 1037 microarrays. Biofilm formation by mutants of genes downregulated
by both LL-37 and 1037 (A) and upregulated by both peptides (B). Transposon
mutants corresponding to genes dysregulated in biofilm cells by the action of
both LL-37 and 1037 were grown in polypropylene microtiter plates at 37°C
for 22 h, and residual biofilm formation was assessed by crystal violet staining
All experiments were done at least 3 times, and statistical significance was
determined using one-way ANOVA (no asterisk, P � 0.05; *, P � 0.05; **, P �
0.01; ***, P � 0.001).
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timicrobial activity and antibiofilm activity are separately deter-
mined, since 1037 had very weak activity against planktonic bac-
teria and inhibited biofilm production even in Burkholderia that is
completely resistant to polymyxin B and other cationic peptides.
In the process of library screening, we identified a consensus se-
quence (FRIRVRV) present in several peptides with antibiofilm
activity that will serve as a basis for iterative design of improved
peptides. Small cationic peptides that simultaneously target bio-
films and swarming while retaining either direct antimicrobial or
immunomodulatory activities might provide the basis for a new
generation of anti-infective agents. Alternatively, the combination
of 1037 plus a second agent with antimicrobial properties could
also provide a good therapeutic strategy.
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