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Pathogens resistant to available drug therapies are
a pressing global health problem. Short, cationic
peptides represent a novel class of agents that
have lower rates of drug resistance than deriva-
tives of current antibiotics. Previously, we created
a software system utilizing artificial neural net-
works that were trained on quantitative structure-
activity relationship descriptors calculated for a
total of 1400 synthetic peptides for which antibac-
terial activity was determined. Using the trained
system, we correctly identified additional peptides
with activity of 94% accuracy; active peptides
were 47 of the top rated 50 peptides chosen from
an in silico library of nearly 100 000 sequences.
Here, we report a method of generating candidate
peptide sequences using the heuristic evolutionary
programming method of genetic algorithms (GA),
which provided a large (19-fold) improvement in
identification of novel antibacterial peptides.
Approximately 0.50% of peptides evaluated during
the GA method were classified as highly active,
while only 0.026% of the nearly 100 000 sequences
we previously screened were classified as highly
active. A selection of these peptides was tested
in vitro and activities reported here. While GA
significantly improves the possibility of identifying
candidate peptides, we encountered important
pitfalls to this method that should be considered
when using GA.
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Human pathogens that are resistant to current antibiotic treatments
represent a significant health threat worldwide (1). Drugs based on
synthetic peptides are inspired by the short cationic, amphipathic
peptides found throughout the kingdoms of life that possess antimi-
crobial activity by various mechanisms (2). These peptides have
drawn significant attention as a possible source of novel antibacte-
rial agents (3–6). While antimicrobial peptides generally exhibit
lower potency against susceptible bacterial targets compared to
conventional low-molecular-weight antibiotic compounds, they have
advantages that compensate for this lower potency, including fast
killing, a broad range of activity, a postulated multiplicity of targets,
low toxicity for host cells, effectiveness against clinically multidrug-
resistant bacteria, and minimal development of resistance in target
organisms (6,7).

We have recently shown that synthetic peptides with high antibac-
terial activity and low toxicity can be identified with high accuracy
using cheminformatics and machine learning and without the use of
an original template sequence (8,9). To achieve this, we used a
quantitative structure-activity relationship (QSAR) approach utilizing
artificial neural networks (ANN) to build computational models of
peptide activity based on data from over 1400 random sequences,
biased to contain amino acids believed from substitution analyses
to be important for antibacterial activity. As a basis for describing
structure in these peptides, a set of 44 descriptors were employed,
including 3D QSAR descriptors that utilize atomic-scale molecular
information, the so-named 'inductive' QSAR descriptors reviewed
previously (10). Briefly, the 'inductive' QSAR descriptors describe
whole molecules based on the calculated effects of the atomic con-
stituents of a molecule. A total of 26 'inductive' descriptors were
used in this study (Table S1), based on electronegativity, hardness,
charge, substituent, and steric effects. An additional 18 conven-
tional whole-molecule descriptors were used, including numbers of
hydrogen acceptors and donors, surface area, total and partial
charges, and molecular weight. In addition to peptide studies, these
have been successfully applied to a number of molecular modeling
studies, including identification of antibacterial activity of small
compounds (11) and classification of antimicrobial compounds, con-
ventional drugs, and drug-like substances (12,13).
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To demonstrate the effectiveness of these techniques in identifying
drug candidates, an in silico screening of 100 000 peptides was
performed. By randomly synthesizing example peptides from each
activity quartile, including low-activity peptides, it could be demon-
strated that peptides with superior activity could be identified with
94% accuracy. However, the complexity of the ANN solution pre-
vented us from 'inverting' the solution and using it to directly deter-
mine peptide sequences that are predicted to be active; instead, a
small number of active peptides were identified from a large set of
in silico candidates by computational evaluation.

An exhaustive search was not possible because of the large num-
ber of possible peptide variants (X 20, where X is the number of
amino acids in the peptide chain) and the time and resources
needed for QSAR descriptor calculations. Thus, it is advantageous
to utilize a search strategy that minimizes the number of peptides
that need to be evaluated to determine additional highly active
peptides. Here, genetic algorithms (GA) was applied to this problem
as these evolutionary methods have been applied successfully in
other areas of cheminformatics (14–17). [NB. an earlier application
to a modest number of antimicrobial peptides was reported in the
context of patents (18,19).]

A genetic algorithm is a heuristic method for search-and-approxima-
tion problems and is particularly well suited for problems involving
string-like data such as the amino acids in a peptide. GA operates
on populations of solutions by iteratively enhancing solutions using
operations inspired by natural genetic processes: recombination
(combining parts of two solutions to suggest another) and mutations
(randomly changing one part of a solution to generate another).
Each solution is composed of elements that are randomly modified
('mutated') or shuffled with other solutions ('recombined') and evalu-
ated for fitness at each iteration ('generation'). The best solutions
are propagated into the next iteration with new solutions added to
the population based on modifications and combinations of these
best peptides. A genetic algorithm solution requires that the prob-
lem be described in terms of a genetic representation with a fit-
ness function specified to evaluate each solution. The genetic
algorithm then either passes high-fitness individuals on to the next
generation, removes low-fitness individuals, or creates offspring by
recombination of two existing individuals or by mutation of an
existing individual. Examples of mutation and recombination that
showed dramatic changes on peptide fitness are shown in Figure 1,
whereby mutation of one amino acid (V–I) increased fitness
(described later) from 20 to 26, while recombination of two pep-
tides with fitness 20 yielded a peptide with fitness 0.

In our previous studies, we created a software system to predict
the rank the activity of 9-mer peptides, producing a fitness score.
This system was constructed to make maximal use of the available
experimental data by utilizing models produced by a stratified
10-fold cross-validation, as described previously (8,9). The system
consisted of a set of 30 ANN models derived from the 10-fold
cross-validation models of two datasets (Set A and B) of screened
peptides plus the combined set (Set A + B). These were classifica-
tion models trained to consider the top 5% as active. Confidence
that any given peptide was active could be judged by the number
of models that classified the peptide as active. As reported

previously, the accuracy of prediction of peptide activity was high-
est when the largest numbers of models predicted activity: for
example, for the top 50 peptides predicted of a set of 100 000
amino acid-biased semi-random peptides, the number of models
indicating high activity ranged from 25 to 29 of 30. For these pep-
tides, the accuracy of predicting highly active peptides was 94%.
This number of models indicating high activity was therefore taken
as the genetic algorithm fitness score.

In the current work, we demonstrate that a genetic algorithm
approach dramatically lowers the number of peptides that must be
evaluated for in silico screening of synthetic peptides to identify
those with high potency. In our previous work, we produced soft-
ware models based on molecular descriptors that reliably predicted
peptide antibacterial activity. However, in the previous work, pep-
tides sequences were drawn from a large population of sequences
based on assigned probabilities for each amino acid (without
restriction within a peptide). Here, we remove the restriction of
specifying the amino acid frequency and use GA to produce novel
peptide sequences. While dramatically reducing the computational
efficiency, we demonstrate that GA solutions are dependent on the
starting population with dramatically differing results based on ini-
tial peptide population.

Materials and Methods

Peptide fitness function and classification
models for highly active peptides
As described previously (8,9), we had constructed a software model
to classify peptides as highly active or inactive based on a set of
44 QSAR descriptors calculated for each peptide combined with
ANNs (see Figure S4 for diagram) trained on measured activity of
1433 peptides. The system consisted of 30 ANNs, each classifying
a peptide as in the top 5% of activity of peptides with measured
activity. Briefly, each ANN was configured with three layers:
one input layer consisting of 44 input nodes (one per descriptor),
one hidden layer of 10 hidden nodes, and one output layer
with one node. Each layer was fully connected to the adjacent
layer. We had measured the activity of 1433 peptides in two sets
(of 933 and 500 peptides) using a luminescence assay, where killing
is implied by a decrease in constitutive luminescence in Pseudomo-
nas aeruginosa strain H1001 containing luciferase gene cassette
luxCDABE. We used a stratified 10-fold cross-validation for the two
sets of peptides and the sets combined (for a total of three sets).
ANNs were trained to predict whether each peptide was in the top

RVWKIWRWR (21)

RIWKIWRWR (26)

Mutation 

KWKWWRMWR (20)RWYYWWRRH (20)

RWYYWWMWR (0)

Recombination 

Figure 1: Examples of peptide evolution. Two examples of pep-
tide evolution are shown: mutation of a single amino acid that
results in an improved peptide and recombination of two moderate
scoring peptides recombining to form one low-scoring peptide. Val-
ues in round brackets are the fitness scores for the peptides.
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5% of activity of the peptides in the set using a standard back-
propagation so that internal connections (weights) between the
input and hidden layers, and the hidden and output layers were
optimized to reduce the error between measured and predicted
activity at the output node. In the present work, we used the same
threshold values to classify novel peptides using the number of
models predicting high activity as the fitness score for the genetic
algorithm. Additional details are in Supporting Information.

Initial peptide population
Five simulated evolution experiments were performed here. Two
small initial populations of peptides were selected from the popu-
lation of random 100 000 peptides used previously (8,9). (The
amino acid frequency of the population is shown in Table S3. No
restriction was placed on the composition of amino acids in each
peptide for this original population; these are simply the probabil-
ity of choosing an amino acid for any position in any peptide.)
Peptides were chosen for initial populations in the GA simulations
to maximize the diversity of amino acids present in the popula-
tion. Peptides containing all the 12 amino acids (F, G, H, I, K, L,
M, Q, S, T, V, and Y) present in the population were selected at
two levels of fitness score. We chose a small starting number of
peptides for three reasons: (i) to reduce the cost of peptides were
to be synthesized, (ii) to rapidly evaluate the GA method by keep-
ing the population of peptides small and increase the number of
simulated generations, and (iii) to balance the amino acid types.
Of the 12 amino acids types found in the population of moderate
activity peptides (fitness score of 20 or 21), three (G, Q, S) were
found in only one peptide. Therefore, for these reasons, we chose
to take only two peptides representing each of the 12 types. We
randomly selected two peptides for each amino acid type then
removed five peptides to further reduce the size (because a single
peptide contains more than one desired amino acid type). In simu-
lation A, 19 peptides with moderate activity were selected from
100 000 peptides biased random population having moderate pre-
diction of activity (fitness score of 20 or 21). Similarly, in simula-
tion B, 22 peptides were selected having a fitness score of 2.
Further simulations (C and D) were run from initial populations of
peptides having equal probability of all amino acids except cyste-
ine (which was excluded). Simulation E was run from a starting
population containing only the five amino acids of highest compo-
sition in the experimental peptides (I, K, R, V, W). Randomization
was performed using runif() function of R specifying the appropri-
ate amino acid array.

Evolution of peptide sequences
The initial populations of peptides were evolved over 600 genera-
tions using custom Java code utilizing the JGAP 3.2 (http://
jgap.sourceforge.net) genetic algorithm package and converting sin-
gle letter amino acid peptides into integer arrays for manipulations.
QSAR descriptors were calculated through embedded calls to
Molecular Operating Environment 2007.09 (MOE, 2007; Chemical
Computing Group Inc., Montreal, QC, Canada) from the Java code.
'Inductive' descriptors were calculated using custom scientific vector
language (SVL) scripts using MOE, while conventional descriptors
were calculated using standard MOE methods. The population size

was allowed to vary to ensure all high-scoring peptides remained
in the population. A mutation rate of one change per 15 amino
acids was used.

Assessment of predictor domain
Leverage points were calculated to assess whether peptides occu-
pied the same domain, as described in (20) using the R statistical
language. Leverage points were calculated for linear models relat-
ing 1433 peptides descriptors to the IC50 value and 8249 peptides
from simulations to the fitness values of the peptides. As discussed
in (21), values of leverage points were compared to the 'warning
leverage', h*, value of 3k ⁄ n, where k is the number of parameters
in the linear model (=45) and n is the number of training samples
(n = 1433, h* = 0.0942 for experimental IC50 peptides; and
n = 8,249, h* = 0.0164 for simulated peptides).

Evaluation of peptide antibacterial activity
Antibacterial activity of synthesized peptides was determined [as
previously described (9,22)] using a luminescence-based in vitro
assay and reported as inhibitory concentration at 50% relative to a
control peptide (Rel.IC50) using Bac2A as the control peptide. Briefly,
a culture of P. aeruginosa PAO1 strain H1001 (containing a luciferase
gene cassette luxCDABE) was treated with peptide at eight concen-
trations. The concentration of peptide required to reduce lumines-
cence by 50% was estimated by curve fitting using custom software.

Minimal inhibitory concentration (MIC)
determination
The MIC of the peptides was measured as previously described
(8,9). Briefly a modified broth microdilution method was used. The
peptides synthesized in bulk were dissolved and stored in glass
vials. Peptide purity was assessed by high-performance liquid
chromatography as shown in Table S2 (12 of the 14 peptides had a
purity of 95% or greater). The MIC assay was performed in sterile
96-well polypropylene microtitre plates (Cat. #3790; Costar, Costar,
Cambridge, MA, USA). Serial dilutions of the peptides to be
assayed were performed in 0.01% acetic acid containing 0.2%
bovine serum albumin at 10-fold the desired final concentration.
Ten microliter of the 10-fold concentrated peptide stocks were
added to each well of a 96-well polypropylene plate containing
90 lL of Mueller-Hinton (MH) media per well. Bacteria were added
to the plate from an overnight culture at a final concentration of
2–7 · 105 CFU ⁄ mL and incubated overnight at 37 �C. The MIC was
taken as the concentration at which no growth was observed.

The following microbes were tested for MIC: P. aeruginosa PAO1
strain H103 (23), Staphylococcus aureus ATCC#25923 (23). An meth-
icillin-resistant S. aureus clinical isolate was kindly provided by
Anthony Chow (Vancouver General Hospital, Vancouver, BC, Can-
ada). Vancomycin-resistant clinical isolates of Enterococcus faecium
were obtained from Ana M. Paccagnella (BC Centre for Disease
Control, Vancouver, Canada). A clinical isolate of Escherichia coli
expressing extended spectrum b-lactamases (ESBL) were kindly pro-
vided by George Zhanel (Health Sciences Centre, Winnipeg, Can-
ada). A clinical isolate (#213) of multidrug-resistant P. aeruginosa
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was kindly provided by Carlos Kiffer (University of S¼o Paulo, Bra-
zil). These isolates all have resistance to piperacillin ⁄ tazobactam,
meropenem, ceftazidime, ciprofloxacin, and cefepime. P. aeruginosa
clinical isolates of the Liverpool epidemic strain (LES400) (24) were
all kindly provided by Craig Winstanley (University of Liverpool, UK).
LES400 was resistant to gentamicin and tobramicin. Candida albi-
cans were obtained from Barbara Dill (UBC department microbiol-
ogy, Vancouver, Canada). All tested bacterial strains were
categorized as biohazard level 2 pathogens.

Results and Discussion

Evaluation of peptide fitness score
As described previously, peptide fitness score was taken as the
number of ANNs predicting the peptide as active. As our software
system uses a consensus of 30 ANNs, the fitness score varies from
0 to 30.

Initial population of peptides
Genetic algorithm searches were executed starting from five initial
populations of peptides. There were several goals: first, to identify
additional peptides with very high-fitness scores to evaluate the
ability of GA to identify novel peptides for screening by antibacte-
rial activity assay and secondly, to understand the importance of
starting population on the composition of later peptide populations
in a search. For the first two simulations (A and B), both popula-
tions of peptides were selected from the set of 100 000 peptides
described previously (8,9) at different levels of fitness score. Briefly,
this set of 100 000 sequences had a specified probability for each
amino acid, regardless of location or other amino acids per peptide.
For the first search (simulation A), peptides were selected that
were moderately predicted to be active, having a fitness value of
20 of 30. However, the amino acid diversity was low for those pep-
tides, and the fitness range was expanded to include those with fit-
ness of 21. A small initial population of 19 peptides were selected
to maximize the diversity of amino acids present in peptides with
these initial fitness scores, ensuring that all amino acids present in
the library were present to at least some degree in these peptides
(Table 1), described later. Thus, the initial set of 19 peptides
included all 12 amino acids present in the 594 peptides of the
100 000 peptide set having a fitness value of 20 or 21. As some
amino acids had low representation (only one peptide containing
any of G, Q and S, and two for H), it was decided to use a small
population to minimize the effects of the relatively large numbers
of certain other amino acids in the population. Similarly, the initial
peptides for simulation B were selected from the total of 2503 pep-
tides of the 100 000 having a fitness score of 2, a low score indi-
cating low confidence that these are highly active peptides
(Table 2). A random population of 22 peptides was selected and
represented all amino acid types in this population in at least two
peptides.

Three additional simulations were run for 200 generations each
(because of time constraints for analysis) to assess the global evo-
lution of the GA process. Two simulations (C and D) were run start-
ing from 20 initial random peptides have equal probability of each

amino acid at any position (except for cysteine, which was not
included because of incompatibility with the synthesis method used
previously for experimental peptides). One final simulation (E) was
run from a population of 20 peptides randomized for only five
amino acids (I, K, R, V, W) that are highly represented in the origi-

Table 1: Initial peptide population for simulation A. Peptides
were chosen from a set of biased random sequences that had a
score of 20 or 21 in simulation A (moderate confidence in activity)
and selected to have diverse amino acids populations

Sequence Score

KKWWYWWKR 20
KWKRWFKWR 21
KWKWWRMWR 20
MWRKWRRWW 21
RKKWWWLFR 21
RLKWWRWRW 21
RRWRWWWVW 21
RRWWWRLWW 21
RRWWWRRWY 21
RVWKIWRWR 21
RWIRKIWWR 21
RWIWWRRWW 21
RWRWWGWRR 20
RWRWWWKKT 20
RWWRWWKQR 20
RWWWWSRRR 20
RWYYWWRRH 20
RYRWWKWRH 20
TWWWKKWRR 20

Table 2: Initial peptide population for simulation B. Peptides
were chosen from a set of biased random sequences that had a fit-
ness score of 2 (low confidence in activity). Peptides were selected
to have diverse amino acids populations

Sequence Score

ARKWWWRWK 2
AWWRKRKWW 2
FVKRWWRFR 2
IGWWWRKRW 2
IWKRWWRKT 2
KNWKWWRWR 2
KRRSWWKWW 2
KRWRWLRWG 2
KWWRWRRFI 2
QRRRWWWWK 2
RLIRWWIRK 2
RRKRLYWIW 2
RRRWYWKWN 2
RRWRIWWIK 2
RTYKRWYRW 2
RWIRWWRQW 2
RWRHIWWRW 2
RWWKWRWLM 2
RWYKHWRFR 2
SRWWKRRWY 2
VKRWWWRRM 2
WWRKLWRKL 2
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nal population of experimental peptides (above 5% of total; see
Table S3). Both simulations C and D failed to find any peptide
with fitness score above 10 but did converge on higher scoring sub-
sequences (eg. starting sequence SDD for simulation C; EKWW and
LLWW for simulation D). Simulation E initially contained a high-
scoring peptide sequence IWWRWWIRR and converged on high-
scoring subsequences IWKRW and KRWR. (See Tables S4 and S5).

Iterative improvement in peptides
As shown in Figure S1, there was rapid improvement in scores from
the first generation to generation 100 with continued improvement
up to generation 600 for simulations A and B. As expected,
throughout the evolution of the population of peptides, the genetic
algorithm created a set of peptides having a variety of fitness
scores owing to the random nature of novel peptide generation. For
simulation A, the final generation contained 34 peptides, including
10 peptides with score of 29 and 22 peptides with scores that
were 26 or higher (Table 3). The highest score observed in any of
the peptides studied here or previously (9) was 29 rather than the
maximum of 30 possible. This suggests that the genetic algorithm

method could not identify any peptides with a higher score than
those already identified. Of the 10 top-scoring peptides, nine were
closely related and started with the sequence RWKRW. There were
three other peptides starting with this sequence with modestly to
significantly lower scores, 28 (RWKRWWRIL), 21 (RWKRWWKVW),
and 1 (RWKRWSRLL). The population of peptides always contained
a proportion of lower scoring peptides (as seen in Figure S1) owing
to the random nature of creation of novel peptides by the genetic
algorithm. As well, there was a rapid increase in peptide fitness
for simulation B, for which the initial population containing much
lower scores as seen in Figure S1. Thus, the first generations
showed a dramatic rise in fitness scores (Figure S2). The final pep-
tide population for simulation B is shown in Table 4, with 25 of the
51 peptides scoring 26 or higher. The fitness scores for simulation
A (mean 22.4, SEM 1.6) and simulation B (mean 20.9, SEM 1.2)
were not significantly different (p-value >0.05 using Student's t-
test). None of these peptides in the final populations were found in
the previous 100 000 peptide population from our previous studies
(8,9).

There were two peptides (KWKRWWWFR and KWKRWWWWR) in
common between the final populations for simulation A and B. Sim-
ulation B had no peptides with fitness score above 28 but included
more peptides with high score (25 peptides with fitness scores of
26 and above). This suggests that the specific peptides in the final
population were largely dependent on the initial population of pep-
tides, as expected because the dominant method of generation of
novel sequences was through cross-over from previous peptides
and the effects of mutations were minor given the genetic algo-
rithm parameters used here. The number of high-fitness score pep-
tides appeared to be unchanged between generation 400 and
generation 600 for both simulations A and B (Figure S1), suggesting
that in each case, the genetic algorithm had settled on a 'local
optimum' set of sequences from which it was unlikely to escape
through continued evolution. Further improvements would likely
require introduction of peptides with dramatically different
sequences into the population.

Evolution of amino acid composition
The amino acid distribution of the peptide populations varied during
the peptide sequence evolution (Figure S3). As described previously,
the number of amino acid types was maximized when selecting the
initial population to include 14 amino acid types for simulation A
and 16 amino acids for simulation B. During evolution over the 600
generations, the number was reduced to seven amino acid types (in
declining proportion: W, R, K, L, I, F, V) for the high-scoring peptides
in simulation A and six amino acid types (in declining proportion:
W, R, K, I, F, L) for the high-scoring peptides in simulation B. This
proportion of amino acids for high-scoring peptides is similar to the
proportions found previously for high-scoring peptide based on pep-
tides sampled from a biased random library of 100 000 peptides
(8,9).

Evaluation of peptide domain
In prediction studies, it is important to assess how similar a set of
samples are to the samples used to generate the predictive model.

Table 3: Final peptide population simulation A. The final genera-
tion (generation 600) of peptides was sorted by score. The common
subsequence RWKRW is shown in bold and discussed in the text

Sequence Code Fitness Score

RKRWWWRWW 29
RWKRWIRWW 29
RWKRWLRWW 29
RWKRWWRIW 29
RWKRWWRLL GN-1 29
RWKRWWRLW 29
RWKRWWRVW 29
RWKRWWRWI GN-2 29
RWKRWWRWL 29
RWKRWWRWW 29
KKRWWWWFR 28
KRWWWWKFR 28
KWWRWRRWW GN-3 28
RKRWWWRWL 28
RWKKWWRWL GN-4 28
RWKKWWRWW 28
RWKRWWRIL 28
KKRWWWWWR GN-5 27
KWKRWRRWW 27
KWKRWWWWR 27
RKRWWWWFR GN-6 27
KWKRWWWFR GN-7 26
RKRWWWRWR 22
RWKRWWKVW 21
RWKWWWKFR 20
RWKKWWRVW 19
RWYRWWRIW 15
KRWRWWRLL 12
KWKKWWRWL 9
KWKRWWWWL 9
KKKRWRRWW 8
RWKYWWRII 4
RKRWWWRGL 1
RWKRWSRLL 1
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For example, the set of peptides with high activity had a strong bias
in amino acid composition; the initial set of 1433 randomized pep-
tides were also biased in amino acid composition regardless of
activity. The question remains as to how similar the peptides evalu-

ated during the GA evolution were to those used to train the mod-
els. The calculation of leverage is a standard method for assessing
whether a sample is unusual in the space of the predictors (the
space of chemical descriptor values in this case), and therefore less
likely to be modeled well (20). Low-leverage values (near 0) indicate
the sample is not unusual in the space of predictors, while large val-
ues indicate unusual points and possible problems in prediction. The
warning leverage value, h* = 3k ⁄ n, indicates where predictions for
samples should be considered less reliable and depends on the num-
ber of variables in the model (k), as well as the number of samples
(n) (21). To give an estimate of the confidence in prediction, we cal-
culated leverage for the set of 1433 experimental peptides and
those found from simulations C and D, which started from random
initial peptides. We find that few peptides from the initial 1433
experimental peptides have leverage above the warning level (six of
1433, 0.42%; Table S5), while 43 of the 8249 (0.52%) peptides eval-
uated in the simulation from random peptides in simulation C and D
gave leverage above warning leverage (Table S6). (Leverage is plotted
against half-quantile values to illustrate the distribution of leverage
compared to that expected from a normal distribution, Figure S5.)

Assessment of genetic algorithm performance
In a previous study, we examined 100 000 peptides from a random
library of sequences that were biased with respect to frequency of
amino acids. We empirically tested the activity of the 50 peptides
ranked highest by fitness score. As we reported previously, 94% of
these peptides were found to be highly active. This group of highly
active peptides included all peptides with fitness scores of 26–29,
and some peptides scoring 25 (some peptides scoring 25 were also
outside of this group.). Therefore, to permit direct comparisons, it
was considered here that peptides receiving a fitness score of 26
or higher could be relatively confidently predicted to have high anti-
bacterial activity. A total of 22 peptides scoring ‡26 were previ-
ously identified (8,9) by computationally evaluating 99 576 peptides
in the random library (=100 000 peptides)duplicates), or 0.026%
highly active peptides. In contrast, using GA, we identified, over all
generations of the simulated evolution of peptide populations, 22
peptides scoring ‡26 by evaluating a total of 4492 peptides (0.49%
highly active) in simulation A and 25 peptides scoring ‡26 of 5067
peptides (0.51% highly active) in simulation B. Taking these two
values as representative of the two methods (0.026% success when
searching a large-biased random library using ANNs and 0.50%
combined for the genetic algorithm search), a 19-fold enhancement
in the discovery of highly active peptides was observed. As the pro-
gressive clustering of peptide scores into the high-scoring region
was much slower after the first 100 generations, it seems likely
that stopping the genetic algorithm at approximately generation
100 would be more efficient in terms of computational cost per
highly active peptide found, because further highly active peptides
will not be efficiently identified after this point. However, this
increase in efficiency will prevent the algorithm from continuing to
explore other possible peptide candidates and may reduce the
diversity of peptides examined.

Minimal inhibitory concentrations were measured for fourteen
selected peptides against a variety of pathogens, seven each from
final populations of simulation A (codes GN-1 to -7) and simulation

Table 4: Final peptide population, simulation B. The final gener-
ation (generation 600) of peptides is sorted by score. The common
subsequence RWKRW is shown in bold and discussed in the text.
Two peptides appear in both final populations (see also Table 3):
KWKRWWWFR and KWKRWWWWR

Sequence Code Fitness Score

IWKRWWWKR GN-8 27
KWKRWWWIR 27
KWKRWWWWR 27
RIWKIWWKR GN-9 27
IKKRWWWFR GN-10 26
IKWKRWWWR GN-11 26
KLKRWWWFR 26
KLKRWWWWR 26
KWKRWWWFR 26
KWWKIWRWR GN-12 26
KWWKRWKWR 26
KWWKRWWIR 26
KWWKRWWKR 26
KWWKRWWWR 26
RFWKIWWKR 26
RIWKRWWFR GN-13 26
RLWKIWWRR 26
RLWKRWWFR 26
RLWKRWWIR GN-14 26
RWWKIWKWR 26
RWWKIWWKR 26
RWWKIWWRR 26
RWWKRWWFR 26
RWWKRWWIR 26
RWWKRWWWR 26
IKKRWWWWR 25
KLKRWWWIR 25
KWWKIWWKR 25
KWWKRWWFR 25
RIWKRWWWR 25
RLKRWWWFR 25
RWKRWWWFR 25
KLWKRWWWR 24
RWWKIWRWR 24
KWWKIWKWR 22
RWWKWWWIR 22
RFWKIWRWR 21
KWKRIWWKR 19
RWWKRWAIR 19
RTWKRWWIR 18
RTWKIWKWR 12
KWWKRWWIH 11
KWWKRWSWR 10
RLWTRWWFR 9
RIWARWWFR 7
KWWKDWWKR 6
RFEKIWWKR 6
RIDKIWLKR 5
RLWKNWWRR 2
RFWQIWRWR 0
RWSKRWWWV 0
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B (codes GN-8 to -14), shown in Table 5. The MIC of wild-type
P. aeruginosa strain H1001 used in the luminescence assay was
50–64 lg ⁄ mL for Bac2A (22). As P. aeruginosa strain H103 is the
parent of H1001, we assume a similar MIC, and the value
32 lg ⁄ mL is close to the 50% of the Bac2A MIC (25 lg ⁄ mL).
Therefore, MIC values for peptides GN-1 to GN-7 in simulation A
were consistent with the criterion for high activity used previously.
Only one of the seven peptides from simulation B had MIC
£32 lg ⁄ mL. The activity of peptides varied depending on the
microbe being treated but some peptides like GN-2, -4, -5, and -6
demonstrated excellent activity. These results suggest a bias attrib-
uted to starting peptide populations and the particular simulated
evolution that led to the final populations.

Conclusions

We have described here the use of a genetic algorithm to effi-
ciently identify novel peptides that have a high likelihood of being
strongly antibacterial. In our previous studies, we created software
models using ANNs that were found to be up to 94% accurate in
predicting highly active peptides, when using a very large in silico
library of 100 000 biased random sequences to identify additional
peptides. In the current study, we demonstrated that the heuristic
search method of GA identifies additional active peptides with con-
siderably greater efficiency (0.50% of evaluated peptides) than our
previous study with biased random sequences (0.026% of evaluated
peptides). Currently, we evaluate QSAR descriptors for each peptide
using commercial software on a small number of computers, a situ-
ation that strongly limits the number of peptides that can be evalu-
ated. Hence, we find that the increased efficiency of the genetic
algorithm methods allows a dramatically increased capability to
identify novel antimicrobial peptide candidates. Nevertheless, we
find that the activity of peptides that result from sequence searches
using GA is strongly dependent on the initial starting population of
peptides, despite the final fitness scores for the two simulations
starting from similar distribution of amino acids being statistically
similar. Based on leverage calculations for peptides, the most reli-
able predictions will be obtained for peptides most similar to those
whose antibacterial activity was measured during the initial model
construction. A more effective strategy would be to adopt an itera-
tive approach, wherein computational and experimental approaches
were used to identify new improved starting point for initiation of
genetic algorithms, followed by retraining of the machine learning
algorithms using the new data to improve the ability to predict pep-
tide activity. Despite these restrictions on generality of prediction,
we have reported here several novel peptides that are active
against pathogens of clinical importance.
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