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Review
Immunity is not simply the product of a series of discrete
linear signalling pathways; rather it is comprised of
a complex set of integrated responses arising from a
dynamic network of thousands of molecules subject to
multiple influences. Its behaviour often cannot be
explained or predicted solely by examining its com-
ponents. Here, we review recently developed resources
for the systems-level investigation of immunity.
Although innate immunity is emphasized here, its con-
siderable overlap with adaptive immunity makes many
of these resources relevant to both arms of the immune
response. We discuss recent studies implementing these
approaches and illustrate the potential of systems
biology to generate novel insights into the complexities
of innate immunity.

Understanding innate immunity requires systems-level
analysis
Innate immunity: recent developments reveal its

complexity

Interest in the innate immune response [1], often described
as our first line of defence against invading pathogens, has
exploded in recent years, leading to an increased under-
standing of its importance in protection against and
susceptibility to a range of infectious agents, in addition
to the discovery of the complex communication between the
innate and adaptive immune systems. This heightened
focus has enabled not only an increasingly detailed dissec-
tion of many of the key signalling pathways involved [2–4]
but also the realization that the innate immune response is
much more complex than previously imagined [5].

Innate immunity can no longer be simply thought of as a
set of discrete signalling pathways activated by a pathogen
binding to a receptor (Figure 1a); instead, the innate
immune response is a complex network of interconnected
pathways with activities dependent on many factors
(Figure 1b, 1c). It is now clear that single ligands can trigger
multiple signal transduction pathways, although it is rare
that a single stimulus would be involved in an infection.
More commonly,multiple ligands simultaneously stimulate
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a range of receptors, which in turn activate several signal-
ling pathways [6]. These pathways often exhibit cross-talk,
complex feedback or feed-forward loops [7] and diverse
mechanisms of regulation. The importance of post-tran-
scriptional regulation of signalling, including regulation
mediated by microRNAs (miRNAs) [8] and post-transla-
tional modifications (e.g. proteolysis, ubiquitination, phos-
phorylation or acetylation [9]) is becoming increasingly
apparent. Downstream of the pathways, specific subsets
of transcription factors (TFs) are activated to initiate the
appropriate gene expression response to a given stimulus
[10]. For example, recently, the amplification and attenu-
ation kinetics of a gene-regulatory network involving the
TFs CCAAT/enhancer binding protein delta (Cebpd), acti-
vating transcription factor 3 (Atf3) and nuclear factor kappa
B (NF-kB), was shown to distinguish between transient and
persistent signalling triggered through Toll-like receptor 4
(Tlr4) [11]. The environment surrounding the cell can also
haveaprofoundeffect on its response to apathogen.Contact
with other immune cell-types [12], for example, or exposure
to compounds including cytokines, hormones or extrinsic
small molecules, can also impact upon the immune
response. At the population level, single nucleotide poly-
morphisms (SNPs) can alter protein–protein interactions or
transcriptional regulation, and add another layer of com-
plexity [13].

The immune response is also not simply a function of
the host; the pathogen itself and regulated variations in
its virulence along with complex interplay with the rest of
the microbiome can all lead to variation in the innate
immune response. For example, there are pronounced
differences in the macrophage responses to viable organ-
isms, such asMycobacterium tuberculosis, compared with
the response to inactivated bacteria [14], highlighting the
fact that viable pathogens can actively manipulate the
host response. Similarly, host factors can influence the
pathogen; interferon-g (IFN-g), for example, stimulates
the transcription of Pseudomonas aeruginosa virulence
factors [15].

Yet another layer of complexity is introduced when the
cell-type and species specificity of the innate immune
response are considered. Certain receptors and signalling
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Box 1. What is systems biology?

Systems biology represents a powerful and comprehensive paradigm

for biology that stands in contrast to the reductionist approach that has

tended to dominate. In the reductionist approach, researchers

attempted to understand a complex entity (e.g. a cell, an organ or a

disease) by breaking it down into smaller, more tractable units for

study, such as genes, complexes or pathways. The reductionist

approach was characterised by the concept that a system is the sum

of its parts and simply identifying and characterizing these parts would

be sufficient to generate predictions about the system’s behaviour.

This is clearly not the case, however, because the extensive

biomolecular cataloguing of the ‘omics’ era has given rise to many

more questions than it has answered.

The systems biology approach regards a system as more than the sum

of its parts – its behaviour arises not from simply the presence of its

building blocks but through the complex relationships among them.

Indeed, systems display what are termed emergent properties, which

are behaviours made possible only through the interaction of a system’s

components, and which cannot be predicted by looking at a single

component alone. An ant colony or a flock of birds flying in unison

represent two such emergent properties because they are both traits that

could not have been predicted easily from observing a single ant or bird.

Understanding of a biological system, its components and its

emergent properties benefits from harnessing as many data types as

possible, including catalogues of genes, proteins, RNAs, small

molecules and cells; their interactions with each other and measure-

ments of the concentration, regulation and behaviour of these entities

under a range of conditions. A variety of high-throughput technologies

are typically used to collect these measurements, with bioinformatics

methods used to warehouse and integrate the data and mathematical

modelling approaches used to generate predictions regarding the

system’s behaviour. These predictions are then tested experimentally –

sometimes they are validated and, in other cases, the resulting data are

used to further refine the prediction. This iterative cycle of model

building and testing continues until a conclusion has been reached.
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pathways are only observed in specific cell-types, and there
can bemarked differences depending on the species. TLR2,
for example, is expressed at very low levels in human
endothelial cells (ECs) and is sequestered intracellularly,
whereas it is expressed at high levels in murine ECs and
translocated to the cell surface [16]. Mouse models are
often used as surrogates for investigating human disease
and infection, despite the fact that the mouse and human
innate and adaptive immune systems both differ at several
crucial points (reviewed in Ref. [17]). Finally, it is probably
not entirely appropriate to consider the innate and adap-
tive immune systems as separate entities because recent
work has blurred the boundaries between the two and
revealed many molecules and cell-types that act as bridges
between innate and adaptive immunity or as effectors in
both systems [18].

Several additional examples of the complexity of the
innate response have recently been demonstrated in stu-
dies of patients deficient in key innate immunity signalling
molecules. Given its role as a key adaptor in TLR signal-
ling, one would expect that patients deficient in myeloid
differentiation primary response gene 88 (MyD88) would
exhibit markedly hampered immune responses; indeed
this prediction is true in the murine model. In humans,
however, MyD88-deficient patients are susceptible to pyo-
genic bacterial infections, but otherwise show normal
resistance to most pathogens [19]. Furthermore, the infec-
tious phenotype resolves itself after childhood, as does a
similar deficiency in patients with a mutation in the down-
stream interleukin-1 receptor-associated kinase 4 (IRAK4)
gene [20]. These observations point to a level of complexity
that goes far beyond our currentmodels and indicate that if
we are to truly understand the nature of the immune
response, the mode of action of immunomodulatory com-
pounds and the pathogenesis of immune system disorders,
Figure 1. Traditional views of innate immune signalling fail to capture its full complex
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Why employ systems biology approaches?

A system as intricate as innate immunity necessitates the
detailed level of investigation provided by systems biology
approaches (Box 1). This approach to biological exper-
imentation views a system of interest as not just a set of
discrete components, but rather as a complex product of
the interactions between these components and their
relationship with the surrounding environment. This
new experimental paradigm is driven by high-throughput
methodologies and would not be possible without the
extensive catalogues of genes, proteins and other biomo-
lecules, and their interactions, which have come out of the
‘omics’ era (‘omics’ being a catch-all phrase describing
high-throughput approaches to analysing biological sys-
tems, including genomics, transcriptomics, proteomics,
metabolomics and pharmacogenomics). These resources
have permitted the development of new approaches, such
as the use of genome-wide association studies to identify
new susceptibility genes or the use of interaction data to
identifymore accurate biomarkers for disease progression
or outcome.

Although immunologists have utilized the high-
throughput experimental techniques used by systems
biology for many years, it is only recently that immu-
nology-focused resources and workflows have been devel-
oped for downstream analysis of the resulting datasets.
These resources are enabling new insights into the com-
plex nature of the innate immune response and are paint-
ing a much more detailed picture of immunity than ever
before, with recent studies revealing new components of
the system, new regulatory mechanisms and new bio-
markers of immunological disorders.
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Here, we first highlight some of the emerging resources
and workflows available to the innate immunology com-
munity, many of which can be implemented by researchers
without extensive bioinformatics experience. We also
describe recent novel insights into innate immunity that
have been generated using these new approaches. We
present leading-edge systems studies from other fields that
might serve as a source of inspiration for future investi-
gation of the innate immune response, and discuss some of
the challenges facing this rapidly growing field. Although
the focus of this review is on innate immunity, it is worth
mentioning that much of our discussion pertains also to
adaptive immunity, as the two systems share receptors,
signal transduction pathways, regulatory systems and
effector mechanisms, and adaptive immunity often tran-
sitions directly from innate immunity. Indeed, virtually all
of the resources and workflows presented here are equally
applicable to the analysis of adaptive immunity.

The immune response is a complex entity with many
possible inputs, influences and outcomes, and as this
review demonstrates, systems biology holds the promise
of allowing us to both better understand its nature, and
generate predictions and hypotheses about its behaviour
under particular conditions.

Emerging experimental approaches and computational
resources
Transcriptomics: meta-analysis for the reliable

measurement of gene expression

Transcriptomics remains one of the most popular methods
for the investigation of the immune response on a genome-
wide scale, enabling researchers to uncover processes and
pathways that are differentially regulated in a condition of
interest and/or generate hypotheses about co-regulation of
a specific set of genes. Microarrays have led to several new
insights into innate immunity both in the past (reviewed in
Ref. [21]) and more recently (see later), whereas new
technologies, including next-generation sequencing
(reviewed in Ref. [22]) and exon and microRNA arrays,
represent the future of transcriptomics. Regardless of the
technology used, the long lists of differentially expressed
genes generated by transcriptomics experiments can be
noisy, with many false positives and false negatives. To
fully realize the benefits of this data source, therefore,
systems biologists have recognized that it is often necess-
ary to integrate multiple datasets from diverse sources for
the purposes of meta-analysis, in which datasets are com-
bined and only genes behaving similarly across several
independent experiments are considered as true positives.

Meta-analysis requires easy access to relevant data. In
addition to resources such as Array Express (Table 1) [23]
and the Gene Expression Omnibus (GEO) [24], both of
which are generalised repositories for transcriptomics data
from all species, conditions and platforms, several groups
have created publicly available databases of innate (and
adaptive) immunology-relevant transcriptomics datasets.
These include the Reference Database of Immune Cells
(RefDIC) [25] and the Immune Response In Silico database
(IRIS) [26]. RefDIC stores Affymetrix GeneChip profiles of
unstimulated human and mouse immune cells, whereas
IRIS contains Affymetrix data from activated and differ-
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entiated human immune cells. A third repository at the
Institute for Systems Biology (ISB) contains Affymetrix
data derived from TLR ligand-stimulated mouse macro-
phages (www.innateimmunity-systemsbiology.org) [27].

The aforementioned resources, although valuable, can
be difficult to harness formeta-analysis. The larger general
repositories contain data generated bymany discrete array
platforms that can be difficult to integrate, whereas the
immune-specific compendia focus on only a small number
of cell types or conditions. The recent Immunological Gen-
ome Project initiative (Table 1) [28] aims to overcome these
obstacles and is the first transcriptomics project to take a
truly systems-level approach to the analysis of immune cell
populations. A network of laboratories is generating rig-
orously standardised genome-wide gene expression data-
sets, profiling over 200 different mouse immune cell
populations under a variety of conditions, including genetic
polymorphisms, gene knockdowns or knockouts and drug
treatments. These data are being made freely available
through the project website. Although the project is pre-
sently focused on mouse cells and contains more data from
lymphoid cell lineages than myeloid cells, the consortium
might expand its efforts to humans in the future, and they
are actively soliciting suggestions for other cell types for
analysis from the immunology research community.

Meta-analysis has already led to new insights regarding
a conserved host innate immune response to a range of
pathogens. Combining data from 32 in vitro human studies
enabled the identification of a cluster of 511 genes repre-
senting a common host response to bacteria, viruses and
selected other pathogens, which included many poorly
characterised genes and genes not previously known to
be involved in innate immunity [29]. A similar approach
was recently implemented to examine mechanisms of lung
inflammation in vivo using rodent and primate models
[30]. A set of core upregulated and downregulated genes
was identified as contributing to lung inflammation,
regardless of whether the cause was an infection, asthma
or an airborne pollutant; many of theses genes overlapped
with those found in the earlier study [29].

Transcriptomics will undoubtedly continue to provide
novel insights into the innate immune response, although
as discussed later, the real power of these data will be
realized through its analysis in the context of the inter-
actome and other regulatory networks.

Transcriptional regulation: building genetic regulatory

networks

Because TFs bind to short, degenerate sequence motifs
that occur by chance throughout the genome sequence, the
computational identification of TFs responsible for the
regulation of a specific gene is usually confounded by a
high number of false positive TF binding sites (TFBSs)
[31]. Fortunately, high-throughput approaches for the
experimental verification of protein–DNA interactions, in-
cluding chromatin-immunoprecipitation (ChIP) array plat-
forms (ChIP-chip) and the more recent ChIP-seq
technology, in which the array step is replaced by mas-
sively parallel sequencing, are emerging as powerful
methods for identifying genetic regulatory networks on a
genome-wide scale [32].

http://www.innateimmunity-systemsbiology.org/


Table 1. Selected bioinformatics resources for systems-level analysis of innate immunity.

Bioinformatics resource URL Details

Immunology-specific resources

Immune Response In Silico

(IRIS)

http://share.gene.com/clark.iris.2004/

iris/iris.html

Immune specific genes identified from multiple microarray

expression datasets.

Innate Immunity Database http://db.systemsbiology.net/IIDB Repository of genomic annotations and experimental data for

over 2000 mouse immune-related genes derived from over 100

microarray experiments.

Innate Immunity in Heart, Lung

and Blood Disease

http://www.innateimmunity.net/ Project to discover and model the associations between

nucleotide sequence variations (SNPs and Indels) in the genes

of the innate immunity pathway in humans.

InnateDB http://www.innatedb.ca Database and analysis platform facilitating systems-level

analyses of the innate immune system and beyond.

Macrophages.com http://www.macrophages.com Community website for researchers with an interest in

macrophage biology.

Reference Database of Immune

Cells (RefDIC)

http://refdic.rcai.riken.jp Database of quantitative mRNA and protein profiles, specifically

for immune cells and tissues.

The Immunological Genome

Project

http://www.immgen.org Project generating rigorously standardised genome-wide gene

expression datasets in 200 different mouse immune cell

populations.

The Immunology Database and

Analysis Portal (ImmPort)

http://www.immport.org/ The ImmPort system provides IT support in the production,

analysis, archiving and exchange of scientific data for

researchers supported by NIAID’s DAIT.

The Immunome Database http://bioinf.uta.fi/Immunome/ Database that contains information about human immunity

related proteins, their domain structure and the related

ontology terms.

Pathway databases

Integrating Network Objects

with Hierarchies (INOH)

http://www.inoh.org/ Pathway database of model organisms, including human,

mouse, rat and others. Currently, 62 pathways.

Kyoto Encyclopedia of Genes

and Genomes (KEGG)

http://www.genome.ad.jp/kegg/ Database of biological systems, consisting of genes and

proteins, endogenous and exogenous chemicals and ligands

and molecular wiring diagrams of interaction and reaction

networks.

NCI-Nature Pathway Interaction

Database (PID)

http://pid.nci.nih.gov Biomolecular interactions and cellular processes assembled

into authoritative human signalling pathways. Currently, 83

Human Pathways.

NetPath http://www.netpath.org Curated resource of signal transduction pathways in humans.

10 immune and 10 cancer signalling-pathways are available.

Pathguide http://www.pathguide.org/ Comprehensive listing of web-accessible network and pathway

resources.

Reactome http://www.reactome.org/ Curated knowledgebase of biological pathways. Inferred

orthologous events in 22 non-human species.

Interaction databases

Biomolecular Interaction

Network Database (BIND)

http://bond.unleashedinformatics.com Manually curated molecular interaction database now

integrated into the commercial BOND database.

Database of Interacting Proteins

(DIP)

http://dip.doe-mbi.ucla.edu/ Database of experimentally determined interactions between

proteins in 270+ species. 57 000+ interactions.

IntAct http://www.ebi.ac.uk/intact/ Database system and analysis tools for literature-derived or

user-submitted protein interaction data. 180 000+ interactions

from a broad range of species.

Molecular Interaction Database

(MINT)

http://mint.bio.uniroma2.it/mint/ Database of experimentally verified protein–protein interactions

mined from the scientific literature by expert curators. 110 000+

interactions from a broad range of species.

Pathogen Interaction Gateway

(PIG)

http://molvis.vbi.vt.edu/pig/ Database dedicated to the study of host-pathogen protein–

protein interactions.

The Biological General

Repository for Interaction

Datasets (BioGRID)

http://www.thebiogrid.org/ Database of protein and genetic interactions from selected

model organism species. Over 198 000 interactions from six

different species.

VirusMINT http://mint.bio.uniroma2.it/virusmint/ Database annotating in a structured format interactions

between human and viral proteins and integrating this

information in the human protein-interaction network.

Network analysis and visualization

CEll REgion-Based Rendering

And Layout (CEREBRAL)

http://www.pathogenomics.ca/cerebral/ Java plugin enhancing Cytoscape’s functionality by generating

more pathway-like representations of a network and enabling

the visualization of gene expression data from multiple

conditions.

Cytoscape http://www.cytoscape.org/ Software platform for visualizing molecular interaction

networks and integrating these interactions with gene

expression profiles and other state data.

HUB oBjects Anlyzer (HUBBA) http://hub.iis.sinica.edu.tw/Hubba/ A web-based service designed to explore the essential nodes in

a network.
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Table 1 (Continued )

Bioinformatics resource URL Details

Network Analysis Tools (NEAT) http://rsat.ulb.ac.be/rsat/index_neat.html Web-based access to a collection of modular tools for the

analysis of networks (graphs) and clusters (e.g. microarray

clusters, functional classes).

Other useful sites

Array Express http://www.ebi.ac.uk/microarray-as/ae/ A public repository for transcriptomics data, which is aimed at

storing MIAME- and MINSEQE-compliant gene expression data.

Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ A gene expression or molecular abundance repository

supporting MIAME compliant data submissions.

International HapMap Project http://www.hapmap.org/ The goal of the International HapMap Project is to develop a

haplotype map of the human genome and to describe the

common patterns of genetic variation in humans.

miRBase http://microrna.sanger.ac.uk Central online repository for microRNA nomenclature,

sequence data, annotation and target prediction. The current

release (10.0) contains 5071 miRNA loci from 58 species.
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Although these methods, to date, have been imple-
mented to locate binding sites for a small number of TFs
at a time, they have already been successfully applied to
the study of innate immune regulation. ChIP-chip has been
used to validate predicted associations between nuclear
factor-kB-1 (NFKB1), interferon response factor 1 (IRF1)
and the promoters of co-expressed genes in TLR-stimu-
lated murine macrophages [33]. More recently, this tech-
nology was instrumental in the discovery of a cluster of
innate immune response genes that are regulated by signal
transducer and activator of transcription 3 (STAT3) down-
stream of the cytokine leukaemia inhibitory factor (LIF)
[34]. ChIP-seq has also been employed in the discovery of
STAT1 binding sites in interferon-responsive human genes
[35].

A combination of comprehensive computational and
high-throughput experimental approaches to TFBS identi-
ficationmight represent themost promising approach to the
analysis of gene regulatory networks. The ISB maintains
the Innate Immune Database (Table 1), which stores both
predictedTFBSs, representingconsensuspredictions froma
suite of bioinformatics techniques and ChIP-chip verified
TFBSs [27]. The data currently includes 2000 mouse genes
known to have a role in the macrophage response to lipo-
polysaccharide (LPS), but the approach employed is easily
extendable to a larger gene set and to human data.

Proteomics: generating the innate immunity

interactome

In the same way that transcriptomics is used for the
quantification of gene expression at the RNA level and
the consequent inference of gene-regulatory networks,
proteomics has opened up explorations at the protein level,
both quantitatively (reviewed in Ref. [36]) and in the
generation of large-scale protein–protein interaction data
(reviewed in Ref. [37]). In addition to genome-scale pro-
teomics studies that have attempted to capture a global
picture of an host interactome (defined as the network of
interacting proteins and other biomolecules) [37], several
key studies have begun to collate the vast amount of
information specifically regarding the immune interac-
tome, representing the interactions involving the genes
and gene products known to participate in the immune
response. Until recently, much of this immunity-specific
data was present in the biomedical literature, but had not
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found its way into the most popular publicly available
interaction databases (see Table 1 and individual database
URLs therein), an endeavour that was crucial to enable
systems-level analyses. The first release of innate immu-
nity-specific interaction data occurred with the publication
of a manually constructed map of the mammalian TLR
signalling network [38]. More recently, our own efforts on
the InnateDB project (Table 1) have collated, reviewed,
annotated and made available more than 7000 innate
immunity-relevant interactions involving 2000 human
and mouse genes [39].

As new proteomics data are generated, two emerging
areas are likely to expand our knowledge of the innate
immunity interactome. First, investigators are now look-
ing beyond the host interactome to that of the pathogen
and the host–pathogen interface because recent studies
have revealed that many pathogen-encoded proteins
directly interact with molecules of the innate immune
response. An increasing number of viral proteins, for
example, are involved in viral evasion of the innate
immune system through interactions with key proteins
in innate immunity pathways (reviewed in Ref. [40]). A
recent study has provided a proteome-wide map of the
interactions between hepatitis C virus-encoded proteins
and human proteins using a yeast two-hybrid approach
and literature mining [41], whereas the VirusMINT
(Table 1) [42] and Pathogen Interaction Gateway (PIG)
[43] databases provide online resources that describe
known host-pathogen interactions.

Second, more specialized avenues of investigation are
providing increasing detail concerning how post-transla-
tional modifications and protein dynamics influence the
innate immune response. For example, the emerging field
of ‘phosphoproteomics’ will undoubtedly assist in unravel-
ling the dynamics of signalling cascades integral to the
innate immune response. Such studies provide a global
picture of protein phosphorylation, an important mechan-
ism of cellular signal transduction, with the ultimate goal
being the identification of the complete ‘kinome’ of a cell.
The effectiveness of this approach was recently demon-
strated by an analysis of Jun terminal kinase (JNK) sig-
nalling in Drosophila melanogaster [44] using
phosphoproteomics and RNAi (see later), which yielded
a comprehensive map of this important signalling cascade
and several novel activators and repressors.

http://rsat.ulb.ac.be/rsat/index_neat.html
http://www.ebi.ac.uk/microarray-as/ae/
http://www.ncbi.nlm.nih.gov/geo/
http://www.hapmap.org/
http://microrna.sanger.ac.uk/
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Genome-wide RNAi screens: high-throughput insight

into phenotype

Large-scale RNAi screens, in which genes are progress-
ively knocked down using appropriate inhibitory RNA
molecules, have enabled the functional annotation of hun-
dreds or thousands of genes in a single experimental series
and have the potential to rapidly identify crucial innate
immune signalling genes. A recent study [45] used this
technology to screen Caenorhabditis elegans chromosome
1 for innate immunity regulators. Murine homologs of the
32 regulators identified were then further analysed, again
using RNAi, and 11 key regulators were identified, in-
cluding some that had not been previously implicated in
innate immunity. Similarly, another study used RNAi in
human DLD1 colon adenocarcinoma cells to identify reg-
ulators of the Wnt/b-catenin signalling pathway [46], a
pathway that has been recently implicated as having a key
role in the innate immune response [47]. As the authors
noted [46], RNAi screens, by themselves, are powerful in
identifying genes that contribute in some way to a phe-
notype but provide few mechanistic insights. To overcome
this, both of the aforementioned studies integrated data
from the RNAi screens with interaction networks (see
discussion later), thereby enabling the identification of
an evolutionarily conserved protein interaction network
with a role in innate immunity [45] and the discovery of a
novel regulator of Wnt/b-catenin signalling, the angio-
genic factor with G patch and Forkhead-associated
(FHA) domains 1 (AGGF1) [46].

RNAi is also emerging as an important tool to shed light
on host-pathogen interactions. This technology was
applied recently to identify the host proteins involved in
HIV [48] andWestNile virus [49] infections.More than 250
host factors were identified as important in the HIV viral
life cycle; many of these were implicated as being involved
in innate immune signalling pathways and were found to
be highly expressed in immune cells. In theWest Nile virus
investigation, nearly 300 novel host factors were identified.
Again, several innate genes were identified, including b-
defensins and IRF3.

miRNAs and innate immunity

miRNAs were discovered about ten years ago and are now
recognized as crucial post-transcriptional regulators of
gene expression, working through a variety of mechan-
isms, including mRNA degradation and regulation of
translation, for up to 30% of all transcripts. Despite their
novelty, there has been tremendous progress in identify-
ing miRNAs and characterizing their functions. miRBase
(Table 1) [50], themost comprehensive database ofmiRNA
nomenclature, sequence, annotation and target predic-
tion, currently contains around 6000 miRNA sequences
from 58 species and represents an excellent resource for
researchers wishing to determine which miRNAs might
potentially target their gene(s) of interest. InnateDB [39]
is also currently updating its interaction information to
include cases where a specificmiRNA is known to regulate
an innate immunity-relevant gene, providing a more
focused view of how this type of regulation can impact
immunity than is offered by the more general miRBase
database [51].
Microarray-based platforms that enable the profiling of
miRNA expression on a large or even global scale are also
now available [52] and their impact upon systems biology is
just becoming apparent. A recent study investigated the
leukocyte miRNA response to LPS stimulation [53]. Five
miRNAs were identified as consistently responsive to LPS
stimulation, whereas bioinformatics approaches identified
more than 30 candidate target genes influenced by these
miRNAs that are central to the innate immune response;
these included IRAK1 and 2, several members of the
mitogen-activated protein (MAP) kinase signalling path-
way, multiple interleukins and several key proteins
involved in signalling, apoptosis and transcriptional acti-
vation.

Genetic polymorphisms in innate immunity genes and

the promise of genome-wide association studies

Another layer of complexity that requires consideration in
systems-level analyses of innate immunity is the influence
of genetic polymorphisms and their effects on gene and
protein expression, host-pathogen interactions and mol-
ecular signalling (reviewed in Refs. [54–56]). The Innate
Immunity in Heart, Lung and Blood Disease Project aims
to discover and model associations among nucleotide
sequence variations in human innate immunity genes,
eventually relating these variations to airway diseases.
Over 80 genes have been re-sequenced to date, including
several cytokines, chemokines, interleukins and TLRs,
with the data and related analysis tools available on their
website (Table 1).

Structural variations such as gene copy number vari-
ation (CNV) are also of interest, and technologies such as
array comparative genomic hybridisation (CGH) are
enabling assays of CNV on a genome-wide scale (reviewed
in Ref. [57]). For example, b-defensin CNV is strongly
associated with the inflammatory skin disease psoriasis
[58]. However, the influence of such variations on the
innate immune response to pathogens remains largely
unexplored.

Genome-wide association (GWA) studies, made
possible through the International HapMap Project
[59], and the availability of platforms such as the Affy-
metrix GeneChips and Illumina BeadChips that can
genotype up to 1 million SNPs in parallel, are providing
a powerful new approach for identifying genes that con-
tribute to disease susceptibility, including autoimmune
and chronic inflammatory disorders (reviewed in Refs
[60,61]). Although these studies have been successful in
identifying several new genes associated with disease,
including several innate immune pathway genes [61], in
most cases, only a small number of markers are found to
be statistically significant, accounting for just a fraction
of the estimated genetic components of these diseases. By
identifying those pathways or interaction sub-networks
that are statistically enriched in these datasets, one
might be able to uncover more true-positive associations,
including markers that fall below the traditional signifi-
cance thresholds. The inclusion of network and pathway
data also has the potential to provide more profound
mechanistic insights into the complex diseases targeted
by GWA studies.
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Bringing it all together: computational tools and
workflows for integrating and analysing disparate data
Examining data in a network context: databases and

visualization tools

Simply collecting measurements on a large scale is rarely
sufficient for generating novel systems-level insights.
Instead, as demonstrated by several of the studies
described earlier, measurements must be placed in their
proper biological context, a step that frequently involves
integrating quantitative data with a biomolecular inter-
action network.

Statistical analysis of the gene categories and pathways
enriched in a gene list is a popular approach to investi-
gating large datasets [39] and can reveal much about the
biological processes underlying a phenomenon of interest.
Pathway analysis, however, relies on associating genes of
interest to known biological pathways, which are limited in
scope and are often annotated as basic linear cascades
(Figure 1a). By contrast, network analysis can expand this
simple perspective on signalling to amore complete picture
of the relationships among genes, proteins, RNAs and/or
other molecules (Figure 2). By investigating a larger set of
interactions, network-based analyses, whichmight include
visualization of interacting networks, topological charac-
terisation and more, have the potential to reveal as-yet
unknown signalling cascades or pathways, functionally
relevant sub-networks and the central molecules (often
called ‘hubs’ or ‘bottlenecks’) of these networks. For
example, investigation of the mammalian TLR signalling
network confirmed MyD88 as a bottleneck protein through
which signals frommany different TLRs are funnelled, and
also demonstrated the existence of multiple positive and
negative feedback and feed-forward loops that can be used
to characterize and predict the system’s dynamics [38].
Similarly, analysis of a network of TFs and the genes they
regulate in the response of mouse macrophages to LPS
identified several hubs (highly connected molecules or
nodes) that represent key TFs, including nuclear factor
erythroid derived 2, like 2 (Nrf2), Atf3, E26 avian leukemia
oncogene 1 (Ets1) and Irf1 [62].

Advances in the mapping of interactomes (reviewed in
Ref. [63]) have led to an explosion in the volume of network
and pathway datasets. Pathguide (Table 1) [64], a compre-
hensive listing of web-accessible network and pathway
resources, increased in content by 43% within three years
of its initial publication in 2006. With almost 300 unique
databases available, selecting a suitable one might seem
an intractable problem for researchers. Certain databases,
however, have emerged as leading players in the field of
interactomics (Table 1). Among the most comprehensive
and popular non-commercial interaction databases are
IntAct [65], MINT [66] and BioGRID [67], each of which
stores more than 100 000 interactions across a range of
species and incorporates information in the form of the
experimental types and publications associated with each
interaction.

Of particular interest to immunologists is InnateDB
[39], a recently developed, freely available database and
analysis platform. InnateDB integrates data from many of
the most popular interaction and pathway databases, in-
cluding all of those mentioned earlier, into a single
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resource that consequently represents one of the most
comprehensive repositories of human and mouse molecu-
lar interactions. Further manual curation has led to the
inclusion of many immune-relevant interactions that are
not present in other databases. Unlike other websites,
InnateDB is also a complete analysis platform, offering
comprehensive annotation and database cross-references
for each gene and protein, in addition to seamlessly inte-
grated, user-friendly bioinformatics tools. These include a
method for identifying pathways (of which InnateDB
stores over 3,000) and ontological terms (describing mol-
ecular function, biological process and cellular compart-
ment) that are statistically over-represented in a user-
specified list of genes of interest. Associated quantitative
data, such as gene expression data, can be included fromup
to ten conditions at one time and can be overlaid on path-
ways and networks of interest. Users also have the ability
to construct orthologous interaction networks in other
species and to explore and visualize their data in a network
and/or pathway context. Further development is under-
way, including incorporation of a tool for detecting over-
represented transcription factor interactions.

Applying the tools: systems-level studies provide novel

insights into innate immunity

Beyond network visualization and topological analysis,
more complex workflows are necessary if one wishes to
integrate quantitative measurements with interaction
data to shed new light on the processes underlying innate
immunity (Box 2). In many cases, the starting point for
such an analysis is a time-course microarray experiment.
With two or more time points and/or multiple conditions,
many studies opt to pre-process the data to reduce its
complexity, a step most often accomplished through clus-
tering (grouping according to correlated expression pat-
terns; reviewed in Ref. [68]). It is worth mentioning that
the identity of individual clusters is highly dependent on
the clustering methodology used. However, the advantage
of this strategy is the decrease in complexity of subsequent
analyses, such that each cluster of interest, rather than the
complete dataset, can be used for further analysis. For
example, one study [69] used hierarchical clustering to
group differentially expressed genes with similar temporal
expression profiles in a baboon lung model of Escherichia
coli-induced sepsis. Selected clusters were used to generate
networks that were then examined for functional enrich-
ment and topological features, providing a broad overview
of the functional timeline of sepsis. A similar approach was
adopted in a study that identified a potential early feed-
back loop involving suppressor of cytokine signalling 3
(Socs3) in interferon-g-stimulated murine macrophages
[70].

Analysis of an LPS-stimulated murine macrophage
model [71] illustrates a particularly insightful approach
to investigating the innate immune response to LPS. After
clustering by temporal-expression profile, a second set of
clusters was created by grouping genes that contained
promoter elements with binding sites for similar transcrip-
tion factors. A transcriptional regulatory networkwas then
constructed, interconnecting individual TFs to the genes in
the clusters they were predicted to regulate. Expression



Figure 2. Network-based visualization and analysis. (a) Illustrates the interactions among the members of the human TLR signalling pathway retrieved from InnateDB and

was visualized in one click directly from the InnateDB website using a webstart version of Cytoscape with the Cerebral plugin installed. The open-source Cytoscape

interaction viewer and analysis environment [94] provides extensive capabilities for displaying and editing networks, whereas plugins developed by its user community add

novel functionality. Cerebral (CEll REgion Based Rendering And Layout) provides a pathway-like layout for complex networks [93], a view that is perhaps more intuitive for

biologists. Here, sample expression data have been included to illustrate Cerebral’s ability to display multiple quantitative datasets simultaneously. The top 100 bottleneck

nodes as identified by the HUB oBjects Anlyzer, (HUBBA, [95]) are shown as larger nodes in the network. HUBBA and other tools can be used to identify topologically

interesting features of a network, such as hubs, bottlenecks and cliques, which are often of biological relevance; hubs might represent key regulatory molecules, bottlenecks

typically indicate essential proteins and cliques might represent functional complexes. The MCODE Cytoscape plugin [96] was then used to identify the five most significant

sub-networks from this larger network, which are shown in (b). The largest of these clusters (yellow) was then passed to Cytoscape’s BiNGO plugin for the analysis of

statistically enriched GO (gene ontology) terms [97]. Several over-represented GO terms are significantly associated with this cluster and (c) shows a hierarchy of those

terms pertaining to signal transduction, in which a deeper orange colour is reflective of a smaller p-value.
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data were overlaid onto the transcriptional regulatory
network and network cliques (a term for groups of highly
connected components that often represent functional
protein complexes) that were uniquely responsive at
specific time points were further analysed. Three import-
ant regulators were predicted: Atf3, which had not been
implicated previously in the LPS response; E26 avian
leukemia oncogene 2 (Ets2), which activates several
inflammatory mediators, and nuclear factor (erythroid-
derived 2)-like 2 (Nfe2l2), which was predicted to form a
regulatory circuit with Atf3 through kelch-like ECH-
associated protein 1 (Keap1).

Several studies have taken an even more detailed
approach to the systems-level investigation of innate
immunity, beginning with a landmark paper from the
ISB in Seattle, USA [72]. In a time-course study of the
257



Box 2. Incorporating bioinformatics resources into a systems workflow

As the studies reviewed here demonstrate, a successful systems

biology workflow spans both the bench and the computer. After

high-throughput collection of experimental data measuring tran-

script, protein or phosphorylation levels across multiple time

points and/or conditions, the data must be analysed computa-

tionally, using all or some of the steps described below; to

investigate the possible involvement of key groups of genes,

pathways, transcription factors, biological processes etc, in parti-

cular immunological events. For each step, we have noted the

computational resources that could be employed (See Table 1 for

URLs).

� Retrieval of existing gene expression data for meta-analysis:

Immunological Genome Project, IRIS, IIDB, RefDIC, ArrayExpress,

GEO

� Clustering and pre-processing of data to reduce complexity:

Cytoscape with Cerebral or clusterMaker plugin, numerous inde-

pendent clustering tools available online.

� Functional enrichment analysis based on functions (ontology) or

features (e.g. involvement of receptors, pathways or transcription

factors): InnateDB (pathway and gene ontology enrichment), IIDB

(TFBS enrichment), Cytoscape with BiNGO plugin (gene ontology

enrichment).

� Retrieval of a comprehensive interaction network surrounding the

genes of interest: InnateDB (interactions, pathways), IntAct (inter-

actions), BioGRID (interactions), MINT (interactions), BIND (interac-

tions), DIP (interactions), VirusMINT (host-pathogen interactions),

PIG (host-pathogen interactions), INOH (pathways), KEGG (path-

ways), PID (pathways), NetPath (pathways), Reactome (pathways).

� Network visualization and data overlay: Cytoscape with Cerebral or

VistaClara plugin.

� Topological or module-based analysis of the network to identify

key regulators, signalling networks and functional complexes:

Cytoscape with MCODE or jActiveModules plugins, HUBBA, NEAT.

� Addition of information beyond the interactome: miRBase (miR-

NAs and their target genes), Immunome (SNPs), HapMap (SNPs).
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murine macrophage response to LPS, a cluster of early
responsive TFs was identified and, from this, a target
factor (Atf3) was selected for further analysis. Transcrip-
tion factors known to interact with Atf3 were retrieved and
the promoters of genes in a second early response cluster
were scanned for potential binding sites for Atf3 and its
interactors. Of these genes, those encoding interleukin 6
(Il6) and Il12bwere selected for follow-up usingmathemat-
ical modelling of Atf3 and reticuloendotheliosis oncogene
(Rel) binding to the promoters of these genes. Predictions
made by the model were then tested in vivo, confirming
that Atf3 acts as a negative regulator of the Il6 and Il12b
genes and is part of a negative feedback loop in response to
Tlr4 stimulation. The model was later expanded to include
a second regulator, Cebpd [11].

A third time-course experiment from the ISB investi-
gated the effect of multiple TLR agonists on the murine
macrophage response [33]. Early response TFs were
identified through clustering, and downstream target
genes were identified based on the enrichment of these
transcription factor binding sites in the promoters of
genes in delayed response clusters, by utilizing a sig-
nal-processing measurement termed time-lagged corre-
lation (TLC). A regulatory network was constructed and
expanded through the inclusion of TF interaction data
from publicly available sources. This study implicated
TGFB-induced factor homeobox 1 (Tgif1) in macrophage
activation.

Several other studies have implemented variations on
these approaches. An analysis of publicly available asth-
matic-mouse-lung expression datasets [73] used an unsu-
pervised learning algorithm called Module Networks [74]
to predict potential regulatory modules and consequently
implicated serum amyloid A 3 (Saa3) and several other
genes in lung inflammation. By retrieving interactors of
module members and adding them to the network,
insight was gained into the potential regulators of the
Il13 pathway, which is important in both lung inflam-
mation and the innate and adaptive immune responses
[75]. Newly identified regulators of Il13 signalling
included transforming growth factor b 1 (Tgfb1) and
Jun-B oncogene (Junb).
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New directions: inspiration from studies outside
immunology
As immunologists move towards more complex systems-
level analyses, it is worthwhile looking to leading-edge
studies in other disciplines for inspiration. One recent
study [76] has demonstrated how insights derived from
a network of functional associations can be complemented
with data from other disparate sources to identify novel
disease-susceptibility genes. A network was constructed
containing four known breast cancer susceptibility genes
and 114 genes co-expressed with these genes in a large
number of patients. Each gene was connected to others in
the network on the basis of multiple types of functional
associations derived from data acrossmultiple species. The
114 genes were then ranked based on the strength of their
functional associations with the four known risk genes and
high-ranking genes were selected for downstream
analysis. A yeast two-hybrid experiment was then per-
formed to generate a physical interaction map centred
on one of these, the hyaluronan-mediated motility receptor
(HMMR). Several HMMR interactors were known to form
complexes with the breast cancer 1 (BRCA1) protein,
suggesting a physical association that was confirmed sub-
sequently by further experimentation. Knockdown studies
employing small interfering RNA (siRNA) revealed a
genetic interaction between the two genes and pointed
towards a role for HMMR overexpression in centrosome
amplification and tumorigenesis. SNP analysis of the
HMMR gene revealed three SNPs, all associated with an
increased risk of breast cancer, leading the authors to
conclude that HMMR is a novel breast-cancer suscepti-
bility gene. This study thus provides a potential roadmap
for researchers in innate immunity to identify important
new regulators of pathways involved in the innate immune
response. Onemight, for example, identify all the potential
interactors of proteins involved in TLR signalling and
prioritise those with multiple lines of evidence supporting
the interaction and those that have no known role in the
pathway.Methods (for example, siRNA) could then be used
to knockdown the candidate genes and the effects on
downstream components of TLR signalling, such as NF-
kB activation, could be assayed.
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Systems-level analyses are not simply useful for identi-
fying novel regulators; they can also be used for classifi-
cation. Unsupervised clustering was recently applied to
identify distinct phenotypic classes of stem cells based on
153 microarrays [77]. Using the MATISSE algorithm [78],
which combines expression data and interaction network
analysis to identify enriched sub-networks, the authors
constructed PluriNet, an interaction network containing
genes and proteins that are crucial to pluripotency. Apply-
ing a similar approach to microarray data that are being
generated through the Immunological Genome Project is
likely to be able to successfully identify distinct immune
cell phenotypes and the essential sub-networks that differ-
entiate them from each other.

New imaging technologies are also enabling systems-
level investigations of individual cells. Recently, proteo-
mics and imaging technologies have been combined to
visualize the behaviour of individual cancer cells respond-
ing to a drug, with respect to both space and time [79].
Using a library of over 1000 unique fluorescence-tagged
gene products, individual cells were treated with camp-
tothecin and observed for 48 h. By observing the changes in
expression and localisation of the tagged proteins, the
researchers were able to draw several interesting con-
clusions regarding the mode of action of camptothecin.
This study marks one of the first investigations to use
large-scale imaging successfully in a systems analysis, and
a recent review of imaging techniques suggests that this
field holds much potential for advancing systems biology in
the coming years, particularly with respect to quantifying
cellular dynamics [80].

At present, our view of the innate immune response is
largely based on static measurements of what is, in fact, a
very dynamic system. These measurements are typically
captured through system-wide gene expression studies,
which are limited to assessing transcript levels at
selected time points. These time points are usually so
Box 3. Outstanding Questions

Coverage

Only an estimated 15% of the human interactome is known at present

[98]. Furthermore, many known biomolecular interactions are not

annotated in any of the most popular databases. Curation efforts,

such as in InnateDB [39], are part of the solution, but manual review of

the literature is time-consuming. Until a more complete literature-

supported interactome is available, a variety of approaches are being

implemented to infer probable interactions from other data. These

include interactions that are inferred, based on orthology [99], co-

expression [100] and co-evolution-based predictions [101] and

predictions based on the co-occurrence of multiple features, such as

motifs, domains, common subcellular localisation and ontology [102]

[103].

Accuracy

An interaction observed in a single large-scale study, such as a yeast

two-hybrid screen, is less reliable than an interaction observed in

several different studies. Although the leading interaction databases

take care to note the amount of evidence for given interactions, the

experimental approaches used to identify that interaction, and the

associated publication(s), there is no physical interaction database as

yet that integrates this information into a scoring scheme. Although

experienced users often manually screen out interactions that they

judge to be potential false-positives, novice users might not

appreciate the distinction between high- and low-quality interaction
far apart that the fine detail of the dynamics of the
response is lost. Furthermore, simply capturing tran-
script levels does not reflect changes in the localization
of proteins, which, as illustrated by transcription factors
translocating between the nucleus and cytoplasm, is a
crucial aspect of signalling. Furthermore, recent studies
have highlighted the importance of regulation through
rapidly changing interaction and feedback loop kinetics
in determining the nature of the response to a given
stimulus [11]. These new imaging technologies offer
the possibility of monitoring many of the key proteins
in innate immunity in real time and space and promise
to provide a far more comprehensive picture of the
dynamics of the response.

Towards new insights: the future of innate immunity
systems biology
Although systems biology holds considerable promise for
discovery and new insights into processes as complex as
innate immunity, the road forward is not without
obstacles. These challenges (discussed in some detail in
Box 3) are often not specific to the study of innate immunity
but represent challenges for systems biology at large. They
include the need for greater coverage of network data;
increased accuracy of available information and the imple-
mentation of appropriate data and experimental reporting
standards; improvements in the integration of diverse data
types and, perhaps most importantly, shifting the mindset
of researchers away from reductionism to more holistic
systems biology approaches.

Much of the information on the molecular interactions
and signalling pathways involved in innate immunity lies
buried in the biomedical literature where it is inaccessible
for systems biology approaches. Researchers should be
encouraged by the journals to submit annotation on new
interactions to any of the widely used interaction data-
bases.
data. Implementing an edge-weighting scheme, such as that em-

ployed by the functional interaction database STRING (www.string-

db.org) [104], would facilitate the distinction between higher and

lower quality interactions. Furthermore, interactions are context-

dependent; they do not occur in all cell or tissue types and depend on

specific conditions. Many interactions already in the databases do not

have such contextual annotation available and, indeed, much of the

detail required (MIMIx guidelines [105]) to accurately annotate an

interaction is frequently missing in published articles [106].

Integration

To date, many studies have focused on either protein–protein

networks or gene regulatory networks and these two types of

networks are rarely combined into a single comprehensive view.

With the availability of large-scale data on miRNA-target gene

interactions and the phosphoproteomics-derived ‘kinome’, the ability

to integrate these diverse datasets must be a priority. Data standards

will be crucial to enable the sharing and integration of such disparate

datasets (reviewed in Ref. [107]), as is the need for user-friendly

platforms that enable biologists, who have the in-depth knowledge of

their systems but not the computational background, to intuitively

navigate and analyse complex datasets.

The data resulting from the above steps is used to generate

hypotheses, which can then be tested experimentally and either

confirmed or refined through further analysis.
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As discussed earlier, there are notable differences in the
innate immune response in humans and mice. Systems
biology approaches must be cognisant of these differences,
but it is crucial for innate immunity researchers to clearly
specify the species under investigation; this lack of clarity
in experimental papers is one of the most prevalent road-
blocks in curation efforts undertaken within InnateDB.

Systems biology approaches to innate immunity also
need to account for differences in the interactome and
pathways in specific cell-types, and must recognize that
cell population dynamics undoubtedly shape specific
responses. Signalling in a macrophage, for example, might
be very different to signalling in a dendritic cell. In the
same light, the interactome is not a static entity; it is
dynamic and changes according to the specific temporal
expression of genes and proteins, and in response to
particular influences.

As we have discussed in this review article, despite
these obstacles, systems biology approaches to investi-
gating innate immunity hold the promise of providing
important new insights into this first line of defence
against invading pathogens and how dysregulation of
innate immunity leads to uncontrolled inflammation and
disease. Systems biology not only has the potential to
accelerate the discovery of new regulators of innate immu-
nity but will also providemore comprehensive insights into
the kinetics of regulation at the transcriptional, protein–

protein interaction and post-transcriptional levels.
Through an understanding of such kinetics, together with
consideration of the innate response as a complex network
of interactions, we will probably make tremendous strides
in understanding many aspects of this response that are
presently not well-characterized. We might, for example,
begin to understand how innate immunity can distinguish
between different pathogens and danger signals to mount
an appropriate response, despite having a much smaller
repertoire of receptors and diversity than is utilized in the
adaptive response. Systems biology approaches will also
enable further leaps forward in our understanding of how
certain pathogens manipulate the signalling networks of
the host response to their own benefit. Such approaches
might also be key to revealing how polymorphisms in the
host signalling and gene regulation leading to variation in
susceptibility to disease.

One of the ultimate goals of systems biology is the in
silicomodelling of a system and prediction of the effects of a
perturbation, such as a gene knockout or the presence of a
therapeutic compound. Although complex, progress in
modelling of innate immunity is beingmade [81], including
recent mathematical models of IkB-NFkB signalling [82]
and systemic inflammation [83]. With the accelerating
pace of systems-level investigations of innate immunity,
the possibility of an in silico immune system – a compu-
tational environment where one can predict how modu-
lations of the system will alter the response – moves ever
closer.

Acknowledgements
We wish to thank Mr Raymond Lo for his kind assistance with the
manuscript. The authors’ systems biology work has been funded by
Genome Canada and Genome BC through the Pathogenomics of Innate
260
Immunity (PI2) project and by the Foundation for the National Institutes
of Health and the Canadian Institutes of Health Research under the
Grand Challenges in Global Health Research Initiative (Grand
Challenges ID: 419). D.J.L and J.L.G hold Postdoctoral Trainee Awards
from the Michael Smith Foundation for Health Research (MSFHR) and
J.L.G also holds a Sanofi Pasteur CIHR fellowship. F.S.L.B is a Canadian
Institutes of Health Research (CIHR) New Investigator and a MSFHR
Senior Scholar. R.E.W.H holds a Canada Research Chair (CRC).

References
1 Zanker, K.S. (2008) General introduction to innate immunity: Dr.

Jekyl/Mr. Hyde quality of the innate immune system. Contrib.
Microbiol. 15, 12–20

2 Akira, S. (2006) TLR signaling. Curr. Top. Microbiol. Immunol. 311,
1–16

3 Kanneganti, T.D. et al. (2007) IntracellularNOD-like receptors in host
defense and disease. Immunity 27, 549–559

4 Thompson, A.J. and Locarnini, S.A. (2007) Toll-like receptors, RIG-I-
like RNA helicases and the antiviral innate immune response.
Immunol. Cell Biol. 85, 435–445

5 Smith, K.D. and Bolouri, H. (2005) Dissecting innate immune
responses with the tools of systems biology. Curr. Opin. Immunol.
17, 49–54

6 Brikos, C. and O’Neill, L.A. (2008) Signalling of toll-like receptors.
Handb Exp Pharmacol 21–50

7 Hu, X. et al. (2008) Regulation of interferon and Toll-like receptor
signaling during macrophage activation by opposing feedforward and
feedback inhibition mechanisms. Immunol. Rev. 226, 41–56

8 Bi, Y. et al. (2009) MicroRNAs: novel regulators during the immune
response. J. Cell. Physiol. 218, 467–472

9 Sunnerhagen, P. (2007) Cytoplasmatic post-transcriptional
regulation and intracellular signalling. Mol. Genet. Genomics 277,
341–355

10 Walhout, A.J. (2006) Unraveling transcription regulatory networks
by protein-DNA and protein-protein interaction mapping. Genome
Res. 16, 1445–1454

11 Litvak, V. et al. (2009) Function of C/EBPdelta in a regulatory circuit
that discriminates between transient and persistent TLR4-induced
signals. Nat Immunol 10, 437–443

12 Reschner, A. et al. (2008) Innate lymphocyte and dendritic cell cross-
talk: a key factor in the regulation of the immune response. Clin. Exp.
Immunol. 152, 219–226

13 Kawaguchi, Y. et al. (2007) Contribution of single nucleotide
polymorphisms of the IL1A gene to the cleavage of precursor IL-
1alpha and its transcription activity. Immunogenetics 59, 441–448

14 Ehrt, S. et al. (2001) Reprogramming of the macrophage
transcriptome in response to interferon-gamma and Mycobacterium
tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte
oxidase. J. Exp. Med. 194, 1123–1140

15 Wu, L. et al. (2005) Recognition of host immune activation by
Pseudomonas aeruginosa. Science 309, 774–777

16 Shuang, Chen. et al. (2007) Differential expression of Toll-like
receptor 2 (TLR2) and responses to TLR2 ligands between human
and murine vascular endothelial cells. J. Endotoxin Res. 13, 281–

296
17 Mestas, J. and Hughes, C.C. (2004) Of mice and not men: differences

betweenmouse and human immunology. J. Immunol. 172, 2731–2738
18 Borghesi, L. and Milcarek, C. (2007) Innate versus adaptive

immunity: a paradigm past its prime? Cancer Res. 67, 3989–3993
19 von Bernuth, H. et al. (2008) Pyogenic bacterial infections in humans

with MyD88 deficiency. Science 321, 691–696
20 Casanova, J.L. et al. (2008) Revisiting human primary

immunodeficiencies. J. Intern. Med. 264, 115–127
21 Ricciardi-Castagnoli, P. and Granucci, F. (2002) Opinion:

Interpretation of the complexity of innate immune responses by
functional genomics. Nat. Rev. Immunol. 2, 881–889

22 Wang, Z. et al. (2009) RNA-Seq: a revolutionary tool for
transcriptomics. Nat. Rev. Genet. 10, 57–63

23 Parkinson, H. et al. (2009) ArrayExpress update–from an archive of
functional genomics experiments to the atlas of gene expression.
Nucleic Acids Res. 37, D868–D872

24 Barrett, T. et al. (2009) NCBI GEO: archive for high-throughput
functional genomic data. Nucleic Acids Res. 37, D885–D890



Review Trends in Immunology Vol.30 No.6
25 Hijikata, A. et al. (2007) Construction of an open-access database that
integrates cross-reference information from the transcriptome and
proteome of immune cells. Bioinformatics 23, 2934–2941

26 Abbas, A.R. et al. (2005) Immune response in silico (IRIS): immune-
specific genes identified from a compendium of microarray expression
data. Genes Immun. 6, 319–331

27 Korb, M. et al. (2008) The Innate Immune Database (IIDB). BMC
Immunol. 9, 7

28 Heng, T.S. and Painter, M.W. (2008) The Immunological Genome
Project: networks of gene expression in immune cells. Nat. Immunol.
9, 1091–1094

29 Jenner, R.G. and Young, R.A. (2005) Insights into host responses
against pathogens from transcriptional profiling. Nat. Rev. Microbiol.
3, 281–294

30 Pennings, J.L. et al. (2008) Identification of a common gene expression
response in different lung inflammatory diseases in rodents and
macaques. PLoS One 3, e2596

31 Kolchanov, N.A. et al. (2007) Combined experimental and
computational approaches to study the regulatory elements in
eukaryotic genes. Brief. Bioinform. 8, 266–274

32 Collas, P. and Dahl, J.A. (2008) Chop it, ChIP it, check it: the current
status of chromatin immunoprecipitation. Front. Biosci. 13, 929–943

33 Ramsey, S.A. et al. (2008) Uncovering a macrophage transcriptional
program by integrating evidence from motif scanning and expression
dynamics. PLOS Comput. Biol. 4, e1000021

34 Langlais, D. et al. (2008) Regulatory network analyses reveal genome-
wide potentiation of LIF signaling by glucocorticoids and define an
innate cell defense response. PLoS Genet. 4, e1000224

35 Robertson, G. et al. (2007) Genome-wide profiles of STAT1 DNA
association using chromatin immunoprecipitation and massively
parallel sequencing. Nat. Methods 4, 651–657

36 Phizicky, E.M. and Grayhack, E.J. (2006) Proteome-scale analysis of
biochemical activity. Crit. Rev. Biochem. Mol. Biol. 41, 315–327

37 Kuroda, K. et al. (2006) Systems for the detection and analysis of
protein-protein interactions. Appl. Microbiol. Biotechnol. 71, 127–136

38 Oda, K. and Kitano, H. (2006) A comprehensive map of the toll-like
receptor signaling network. Mol Syst Biol 2, 15

39 Lynn, D.J. et al. (2008) InnateDB: facilitating systems-level analyses
of the mammalian innate immune response. Mol. Syst. Biol. 4, 218

40 Bowie, A.G. and Unterholzner, L. (2008) Viral evasion and subversion
of pattern-recognition receptor signalling.Nat. Rev. Immunol. 8, 911–

922
41 de Chassey, B. et al. (2008) Hepatitis C virus infection protein

network. Mol. Syst. Biol. 4, 230
42 Chatr-aryamontri, A. et al. (2009) VirusMINT: a viral protein

interaction database. Nucleic Acids Res. 37, D669–D673
43 Driscoll, T. et al. (2009) PIG–the pathogen interaction gateway.

Nucleic Acids Res. 37, D647–D650
44 Bakal, C. et al. (2008) Phosphorylation networks regulating JNK

activity in diverse genetic backgrounds. Science 322, 453–456
45 Alper, S. et al. (2008) Identification of innate immunity genes and

pathways using a comparative genomics approach. Proc. Natl. Acad.
Sci. U. S. A. 105, 7016–7021

46 Major,M.B. et al. (2008) New regulators ofWnt/beta-catenin signaling
revealed by integrative molecular screening. Sci. Signal. 1, ra12

47 Irazoqui, J.E. et al. (2008) Role for beta-catenin and HOX
transcription factors in Caenorhabditis elegans and mammalian
host epithelial-pathogen interactions. Proc. Natl. Acad. Sci. U. S.
A. 105, 17469–17474

48 Brass, A.L. et al. (2008) Identification of host proteins required for
HIV infection through a functional genomic screen. Science 319, 921–

926
49 Krishnan,M.N. et al. (2008) RNA interference screen for human genes

associated with West Nile virus infection. Nature 455, 242–245
50 Griffiths-Jones, S. et al. (2008) miRBase: tools for microRNA

genomics. Nucleic Acids Res. 36, D154–D158
51 Pedersen, I. and David, M. (2008) MicroRNAs in the immune

response. Cytokine 43, 391–394
52 Yin, J.Q. et al. (2008) Profiling microRNA expression with

microarrays. Trends Biotechnol. 26, 70–76
53 Schmidt, W.M. et al. (2009) In vivo profile of the human leukocyte

microRNA response to endotoxemia. Biochem. Biophys. Res.
Commun. 380, 437–441
54 Misch, E.A. and Hawn, T.R. (2008) Toll-like receptor polymorphisms
and susceptibility to human disease. Clin. Sci. (Lond.) 114, 347–

360
55 Dickinson, A.M. and Holler, E. (2008) Polymorphisms of cytokine and

innate immunity genes and GVHD. Best Pract. Res. Clin. Haematol.
21, 149–164

56 Carneiro, L.A. et al. (2008) Nod-like proteins in inflammation and
disease. J. Pathol. 214, 136–148

57 Emanuel, B.S. and Saitta, S.C. (2007) From microscopes to
microarrays: dissecting recurrent chromosomal rearrangements.
Nat. Rev. Genet. 8, 869–883

58 Hollox, E.J. et al. (2008) Psoriasis is associated with increased beta-
defensin genomic copy number. Nat. Genet. 40, 23–25

59 Frazer, K.A. et al. (2007) A second generation human haplotype map
of over 3.1 million SNPs. Nature 449, 851–861

60 Xavier, R.J. and Rioux, J.D. (2008) Genome-wide association studies:
a new window into immune-mediated diseases.Nat. Rev. Immunol. 8,
631–643

61 Zhernakova, A. et al. (2009) Detecting shared pathogenesis from
the shared genetics of immune-related diseases. Nat. Rev. Genet.
10, 43–55

62 Tegner, J. et al. (2006) Systems biology of innate immunity. Cell.
Immunol. 244, 105–109

63 Charbonnier, S. et al. (2008) The social network of a cell: recent
advances in interactome mapping. Biotechnol. Annu. Rev. 14, 1–28

64 Bader, G.D. et al. (2006) Pathguide: a pathway resource list. Nucleic
Acids Res. 34, D504–D506

65 Kerrien, S. et al. (2007) IntAct–open source resource for molecular
interaction data. Nucleic Acids Res. 35, D561–D565

66 Chatr-aryamontri, A. et al. (2007) MINT: the Molecular INTeraction
database. Nucleic Acids Res. 35, D572–D574

67 Breitkreutz, B.J. et al. (2007) The BioGRID Interaction Database:
2008 update. Nucleic Acids Res.

68 Kerr, G. et al. (2008) Techniques for clustering gene expression data.
Comput. Biol. Med. 38, 283–293

69 Zhu, H. et al. (2007) Temporal dynamics of gene expression in the lung
in a baboon model of E. coli sepsis. BMC Genomics 8, 58

70 Raza, S. et al. (2008) A logic-based diagram of signalling pathways
central to macrophage activation. BMC Syst. Biol. 2, 36

71 Nilsson, R. et al. (2006) Transcriptional network dynamics in
macrophage activation. Genomics 88, 133–142

72 Gilchrist, M. et al. (2006) Systems biology approaches identify ATF3
as a negative regulator of Toll-like receptor 4. Nature 441, 173–178

73 Novershtern, N. et al. (2008) A functional and regulatory map of
asthma. Am. J. Respir. Cell Mol. Biol. 38, 324–336

74 Segal, E. et al. (2003) Module networks: identifying regulatory
modules and their condition-specific regulators from gene
expression data. Nat. Genet. 34, 166–176

75 Brubaker, J.O. and Montaner, L.J. (2001) Role of interleukin-13 in
innate and adaptive immunity.CellMol Biol (Noisy-le-grand) 47, 637–

651
76 Pujana, M.A. et al. (2007) Network modeling links breast cancer

susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338–

1349
77 Muller, F.J. et al. (2008) Regulatory networks define phenotypic

classes of human stem cell lines. Nature 455, 401–405
78 Ulitsky, I. and Shamir, R. (2007) Identification of functional

modules using network topology and high-throughput data. BMC
Syst. Biol. 1, 8

79 Cohen, A.A. et al. (2008) Dynamic proteomics of individual cancer cells
in response to a drug. Science 322, 1511–1516

80 Kherlopian, A.R. et al. (2008) A review of imaging techniques for
systems biology. BMC Syst. Biol. 2, 74

81 Klauschen, F. et al. (2007) Understanding diseases bymouse click: the
promise and potential of computational approaches in Systems
Biology. Clin. Exp. Immunol. 149, 424–429

82 Cheong, R. et al. (2008) Understanding NF-kappaB signaling via
mathematical modeling. Mol. Syst. Biol. 4, 192

83 Foteinou, P.T. et al. (2009) Modeling endotoxin-induced systemic
inflammation using an indirect response approach. Math. Biosci.
217, 27–42

84 Underhill, D.M. (2007) Collaboration between the innate immune
receptors dectin-1, TLRs, and Nods. Immunol. Rev. 219, 75–87
261



Review Trends in Immunology Vol.30 No.6
85 Otsuka,M. et al. (2005) Interaction between theHCVNS3 protein and
the host TBK1 protein leads to inhibition of cellular antiviral
responses. Hepatology 41, 1004–1012

86 Richardson, A.R. et al. (2008) A nitric oxide-inducible lactate
dehydrogenase enables Staphylococcus aureus to resist innate
immunity. Science 319, 1672–1676

87 Taylor, A.W. (2005) The immunomodulating neuropeptide alpha-
melanocyte-stimulating hormone (alpha-MSH) suppresses LPS-
stimulated TLR4 with IRAK-M in macrophages. J. Neuroimmunol.
162, 43–50

88 Chen, X.M. et al. (2007) A cellular micro-RNA, let-7i, regulates Toll-
like receptor 4 expression and contributes to cholangiocyte immune
responses against Cryptosporidium parvum infection. J. Biol. Chem.
282, 28929–28938

89 De Jager, P.L. et al. (2007) The role of the Toll receptor pathway in
susceptibility to inflammatory bowel diseases. Genes Immun. 8, 387–

397
90 Hawn, T.R. et al. (2006) A polymorphism in Toll-interleukin 1

receptor domain containing adaptor protein is associated with
susceptibility to meningeal tuberculosis. J. Infect. Dis. 194, 1127–

1134
91 Kimman, T.G. et al. (2008) Association of interacting genes in the toll-

like receptor signaling pathway and the antibody response to
pertussis vaccination. PLoS One 3, e3665

92 Smith, A.J. and Humphries, S.E. (2008) Cytokine and cytokine
receptor gene polymorphisms and their functionality. Cytokine
Growth Factor Rev.

93 Barsky, A. et al. (2007) Cerebral: a Cytoscape plugin for
layout of and interaction with biological networks using
subcellular localization annotation. Bioinformatics 23, 1040–

1042
94 Shannon, P. et al. (2003) Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome
Res. 13, 2498–2504
262
95 Lin, C.Y. et al. (2008) Hubba: hub objects analyzer–a framework of
interactome hubs identification for network biology.Nucleic Acids Res.
36, W438–443

96 Bader, G.D. andHogue, C.W. (2003) An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinformatics 4, 2

97 Maere, S. et al. (2005) BiNGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological
networks. Bioinformatics 21, 3448–3449

98 Bader, S. et al. (2008) Interaction networks for systems biology. FEBS
Lett. 582, 1220–1224

99 Ramani, A.K. et al. (2008) A map of human protein interactions
derived from co-expression of human mRNAs and their orthologs.
Mol. Syst. Biol. 4, 180

100 Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for
weighted gene co-expression network analysis. BMC Bioinformatics
9, 559

101 Juan, D. et al. (2008) High-confidence prediction of global
interactomes based on genome-wide coevolutionary networks. Proc.
Natl. Acad. Sci. U. S. A. 105, 934–939

102 Rhodes, D.R. et al. (2005) Probabilistic model of the human protein-
protein interaction network. Nat. Biotechnol. 23, 951–959

103 Marcatili, P. et al. (2008) TheMoVIN server for the analysis of protein
interaction networks. BMC Bioinformatics 9 (Suppl 2), S11

104 Jensen, L.J. et al. (2009) STRING 8–a global view on proteins and
their functional interactions in 630 organisms. Nucleic Acids Res. 37,
D412–D416

105 Orchard, S. et al. (2007) The minimum information required for
reporting a molecular interaction experiment (MIMIx). Nat.
Biotechnol. 25, 894–898

106 Cusick, M.E. et al. (2009) Literature-curated protein interaction
datasets. Nat. Methods 6, 39–46

107 Brazma, A. et al. (2006) Standards for systems biology. Nat. Rev.
Genet. 7, 593–605


	Enabling a systems biology approach to immunology: focus on innate immunity
	Understanding innate immunity requires systems-level analysis
	Innate immunity: recent developments reveal its complexity
	Why employ systems biology approaches?

	Emerging experimental approaches and computational resources
	Transcriptomics: meta-analysis for the reliable measurement of gene expression
	Transcriptional regulation: building genetic regulatory networks
	Proteomics: generating the innate immunity interactome
	Genome-wide RNAi screens: high-throughput insight into phenotype
	miRNAs and innate immunity
	Genetic polymorphisms in innate immunity genes and the promise of genome-wide association studies

	Bringing it all together: computational tools and workflows for integrating and analysing disparate data
	Examining data in a network context: databases and visualization tools
	Applying the tools: systems-level studies provide novel insights into innate immunity

	New directions: inspiration from studies outside immunology
	Towards new insights: the future of innate immunity systems biology
	Acknowledgements
	References


