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The rise of antibiotic resistant pathogens is one of the most pressing global health issues. Discovery of new
classes of antibiotics has not kept pace; new agents often suffer from cross-resistance to existing agents of
similar structure. Short, cationic peptides with antimicrobial activity are essential to the host defenses of
many organisms and represent a promising new class of antimicrobials. This paper reports the successful in
silico screening for potent antibiotic peptides using a combination of QSAR and machine learning techniques.
On the basis of initial high-throughput measurements of activity of over 1400 random peptides, artificial
neural network models were built using QSAR descriptors and subsequently used to screen an in silico
library of approximately 100,000 peptides. In vitro validation of the modeling showed 94% accuracy in
identifying highly active peptides. The best peptides identified through screening were found to have activities
comparable or superior to those of four conventional antibiotics and superior to the peptide most advanced
in clinical development against a broad array of multiresistant human pathogens.

Introduction

Short cationic, amphipathic peptides that possess antimicrobial
activity are present throughout the kingdoms of life. In the face
of increasing antibiotic resistance in pathogenic microorganisms,
such peptides have drawn significant attention as possible
sources of novel antibacterial agents.*® Although antimicrobial
peptides (AMPs)® generally exhibit lower potency against
susceptible bacterial targets compared to conventional low
molecular weight antibiotic compounds, they hold several
compensatory advantages including fast killing, broad range of
activity, low toxicity, and minimal development of resistance
in target organisms.>*®

The use of quantitative structure—activity relationships
(QSAR) to predict antibacterial activity of peptides is a relatively
recent development. QSAR analysis seeks to relate quantitative
properties of a compound (known as descriptors) with other
properties, such as drug-like activity or toxicity, and relies on
physical properties that can be conveniently measured or
calculated to predict in a nontrivial way other properties of
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interest such as biological activity. QSAR has become an
integral part of screening programs in pharmaceutical drug
discovery pipelines of small compounds and more recently in
toxicological studies.” There are two aspects to QSAR analysis:
the choice of the set of descriptors and the choice of statistical
learning technique.

Previous QSAR analysis of antimicrobial peptides has been
limited to comparisons between peptides with high similarity,
for example, derivatives of lactoferricin®** and protegrin and
similar de novo peptides.** ** These QSAR studies have mainly
utilized descriptors that are designed to model differences in
properties of similar peptides, such as in the lactoferricin studies,
or have used relatively simple descriptors such as charge,
amphipathicity, and lipophilicity, the relationship of which has
been demonstrated empirically from amino acid substitution
studies.®® Where larger sets of QSAR descriptors have been
used, for example, for protegrin and analogues,**** the models
have been limited to linear models, resulting in only moderate
predictive ability.

We decided to perform QSAR analysis on AMPs using a
more intensive QSAR methodology that utilizes atomic scale
molecular information, recently developed and applied to small
molecules. We have recently reported that similar descriptors
in combination with linear methods such as principal component
analysis successfully predicted the activity of a library of highly
related synthetic peptides, but failed to extrapolate to another
library of dissimilar peptides.>*® These “inductive” QSAR
descriptors (reviewed in ref 17) have been successfully applied
to a number of molecular modeling studies including identifica-
tion of the antibacterial activities of small compounds® and
classification of antimicrobial compounds, conventional drugs,
and drug-like substances, from an extensive set of over 2500
chemical structures, with up to 97% accuracy.*® These studies
have relied on modeling techniques of greater complexity than
those previously applied to antimicrobial peptides. In particular,
classification methods for such compounds were compared,
including artificial neural networks (ANNS), k-nearest neighbors,
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Figure 1. General workflow for QSAR modeling of antimicrobial peptides. The modeling proceeded in two phases, learning and prediction. In the
learning phase (left column), the 3D structures of experimentally tested peptides were estimated, and the QSAR descriptors were calculated on the
basis of these structures. Artificial neural networks (ANNSs) were trained to classify peptides as active or inactive on the basis of the descriptor
values and experimental activity level. ANNs involve a nonlinear transformation of the inputs and are organized in three layers, with connections
and function inspired by natural neuron connections (center column). In the prediction phase (right column), the activities of virtual peptides were
predicted using calculated descriptor values (based on estimated 3D structures) as input to the trained ANNs.

linear discriminative analysis, and multiple linear regression,
and it was found that ANNSs result in generally more accurate
predictions for classification, followed closely by k-nearest
neighbors methods.?°

These higher complexity models use a larger number of
parameters and therefore require greater amounts of data. These
data were available from the recently developed high-throughput
method for screening large numbers of peptides for antibacterial
activity.?* This method rapidly synthesizes peptides on cellulose
support to create peptides that are not limited in sequence
diversity. The peptides have been assayed for antimicrobial
activity using a strain of Pseudomonas aeruginosa engineered
to constitutively luminesce due to an incorporated five-gene
luciferase cassette. By measuring the decrease in luminescence
due to killing and loss of ability to energize luminescence in
the bacteria, a large number of peptides were screened for
antibacterial activity in an automated manner.

In the current work, we applied the methods of atomic
resolution QSAR combined with complex, nonlinear modeling
to accurately predict the antibacterial activities of short cationic
peptides containing high sequence diversity. By combining high-
throughput generation of synthetic peptides with a high-
throughput antibacterial assay, we were able to apply these
methods to a larger data set of peptides than has been used to
date. We demonstrate that this combination of experimental
procedure and QSAR analysis provides dramatic improvement
in prediction of diverse antibacterial peptides. With methods

we describe here, we have performed an efficient, large-scale
in silico screening for antibacterial peptides that has yielded
several potential drug leads. We reported elsewhere a summary
version of these methods?? and, in particular, extensive in vitro
and in vivo results with some of the better peptides; we report
the details of the methodology here.

Results and Discussion

The overall process used for QSAR modeling of antimicrobial
peptides is shown in Figure 1. In summary, the starting point
was a set of random peptides with measured activity. For these
peptides the 3D structure was estimated and used to calculate
QSAR descriptors for each. Models for peptide activity were
built using artificial neural networks based on these descriptors
and the known levels of activity. These models were then used
to computationally assess a much larger set of virtual peptides
for predicted activity. The accuracy of the predictions was
independently assessed by synthesizing and testing many
peptides with various levels of predicted activity.

Effect of Control Antibacterial Peptide on Bacteria. The
effect of treatment of P. aeruginosa with the active control
peptide Bac2A is shown in transmission electron micrographs
(TEMs) (Figure 2, left side). These electron micrographs showed
that Bac2A had a dramatic effect on the morphology of the
bacterial cell surface. Whereas the cell surface of control
untreated bacteria appeared to be smooth (see Figure 2A, left
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Figure 2. Transmission electron micrographs (TEM) and scanning electron micrographs (SEM) of P. aeruginosa. TEM and SEM are shown for
control untreated (TEM A, SEM A) and Bac2A-treated (TEM B, SEM B,C). Bac2A concentration was at the MIC. Bacteria were incubated with
Bac2A for 1 h at 37 °C before fixation and preparation for TEM or SEM. Scale bar is 100 nm (TEM A and B, SEM C) or 500 nm (SEM A and

B).

side), the Bac2A-treated bacteria had cell surfaces that were
severely damaged and contained numerous blebs (Figure 2B,
left side), a well-known phenomenon observed when bacterial
cells are exposed to cationic peptides.>® In addition, the space
between the cell wall and plasma membrane appeared to be
swollen. The blebs of the cell wall were better appreciated when
the surface of Bac2A-treated bacteria were visualized by
scanning electron microscopy (SEM) (Figure 2, right side).

Peptide Data Sets for Model Training. Two initial sets of
synthetic peptides of nine amino acids in length were assayed
for antibacterial activity. Set A consisted of 933 peptides; set
B consisted of 500 peptides. The primary sequences of set A
were chosen with a bias toward enrichment of these sets for
the amino acid proportions of our previously isolated peptides
with antibacterial activity based on previous studies.?*?*
Subsequently, set B peptides were designed with the adjusted
amino acid compositions of the initial peptide population plus
set A peptides, as shown in Supporting Information Supple-
mentary Figure 1. In both sets, there were no constraints on the
amino acid proportions found within any particular peptide. The
two sets were progressively prepared by synthesis on a cellulose
support and assayed for activity against P. aeruginosa using a
luciferase reporter assay as described previously.**

Calculation of Peptide Activity. Peptide antibacterial activity
was measured using the luminescence assay, which assesses
the loss of energy generation capacity shown with antimicrobial
peptides to proportionately reflect lethality as previously
described.?** Peptides were assayed in a dilution series with
relative 1Csy (rel 1Cso) values of the experimental peptides
determined by curve fitting and parameter estimation (for
illustration, see Figure 3) as described below. The fit of the
luminescence experimental values was generally good except
for peptides with very low activity, for which the plateau at
low luminescence (higher Kkilling concentrations) was not
present. These inactive peptides were assigned the rel 1Cs, value
of 25. The activity of the two sets is shown in Table 1 (training
set A and B rows) classified into higher activity (rel 1Cso < 50%
of the control peptide, Bac2A), similar activity (rel 1Cs between
50 and 150% of control), and lower activity (rel 1Csy > 150%
of control).

QSAR Descriptors and Model Building. A large number
of QSAR descriptors are available to describe the physical
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Figure 3. Luminescence profile of a dilution series for three peptides-
.The luminescences for three peptides having high, medium (control
peptide), and low activity are shown. Luminescence and concentrations
were scaled to maximum of 1.0. The X-axis value equivalent to the
point where the horizontal line at luminescence of 0.5 crossed the fitted
curves indicated the relative 1Cs, value for each peptide.

chemistry of compounds. A total of 77 descriptors were
calculated here for each peptide using an estimated structural
conformation based on energy minimization in the gas phase
(using MMFF94 force field). We have found that performance
of predictions of activity is insensitive to the method used to
estimate the three-dimensional structure; performance was
similar for peptides with structures using straight backbone and
structures estimated by energy minimization in the gas phase
or an implicit solvent (Supporting Information Supplementary
Table 2). Some descriptor values were found to be highly
correlated with each other, which led to problems in modeling;
therefore, a set of 44 descriptors was chosen that showed <95%
correlation to any other selected descriptor. All descriptors are
shown in Supporting Information Supplementary Table 1; those
used for modeling are indicated. Descriptors with large cor-
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Table 1. Activities of Peptides from Training Sets and Quartiles in the
100,000 Test Set?

rel 1Csp

higher similar lower
data set activity (<0.5) activity (0.5—1.5) activity (>1.5) median

setA 35 (3.8%) 210 (22.5%) 688 (73.7%)  2.12
set B 14 (2.8%) 114 (22.8%) 372 (74.4%)  3.33

Q1 47 (94%) 2 (4%) 1(2%) 0.23
Q2 32 (64%) 15 (30%) 4 (8%) 0.35
Q3 1(2%) 5 (10%) 44 (88%) 438
Q4 0 (0%) 0 (0%) 50 (100%)  8.34

& Numbers of peptides with various levels of antibacterial activity are
shown. Q1, top of 1st quartile; Q2, top of 2nd quartile; Q3, bottom of 3rd
quartile; Q4, bottom of 4th quartile. Rel ICx, is the relative 1Cs, the ratio
of the 1Cs for the experimental peptide to the 1Csy of Bac2A. Peptides of
which the highest concentration failed to reduce the luminescence by at
least 50% were identified as inactive.

relations (>0.7 or <—0.7) are shown in Supporting Information
Supplementary Table 3.

We performed exploratory data analysis using principal
component regression (PCR) and partial least-squares regression
(PLSR) on set A data in an attempt to identify significant
descriptors. PCR and PLSR were initially performed using 44
principal components (the maximum possible number, equal to
the number of descriptors). The fraction of activity that can be
accounted for by models with increasing numbers of components
(cross-validated R?) is shown in Supporting Information Supple-
mentary Figures 2 and 3. R? is maximum at 0.12 for PLSR at
six components, whereas R? is maximum (also at 0.12) using
all 44 components for PCR. The best PLSR model, using six
components, fit the data poorly (Supporting Information Supple-
mentary Figure 4). The loadings on the first three PLSR
components (the contributions of each descriptor to each
component) are shown in Supporting Information Supplemen-
tary Figure 5. There are no descriptors that clearly dominate
the model. The largest absolute loading on component 1 is 0.25
(+0.25 for vdw_area and —0.25 for Average_hardness), but 21
descriptors have absolute values above 0.15 (Supporting Infor-
mation Supplementary Table 4). These results suggest that
modeling using PCR or PLSR cannot capture important features
of the data.

We used ANNs (Supporting Information Supplemental
Figure 7) to model antibacterial activity because this has already
been successfully applied to small molecules (for example, see
ref 18). ANNSs typically rank highly among machine learning
techniques in predictive performance, and, in addition, they are
relatively insensitive to the presence of noise and correlated
inputs. We used a network configuration with one hidden layer
of 10 nodes, 44 input nodes (one for each descriptor), and 1
output node. A variety of other network configurations were
also evaluated with the number of hidden nodes per hidden layer
(network length) varying between 1 and 20 and the number of
hidden node layers (network width) varying from 1 to 3.
Prediction performance was calculated as positive predictive
value [PPV, (true positive)/(true positive + false positive)].
Except for network lengths of <8 with a width of 1, there did
not appear to be any advantage of using larger numbers of
hidden layers or more nodes per hidden layer than around 10
(Supporting Information Supplementary Figure 6).

Validation of Model Performance. We assessed the ability
of the ANN models to predict antibacterial activity by first
classifying the top 5% of the set A and B peptides as active
according to the rel 1Cs, values—this corresponded to an
approximate rel 1Cs, threshold of 0.6 (0.61 for set A and 0.56
for set B). A 10-fold cross-validation was performed as
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described below with 90% of data allocated to training and 10%
to validation (i.e., reserving a different 10% for each of the 10
validation studies). Sets A and B were synthesized and assayed
at different times as described above, and some systematic
differences were observed in the luminescence results for
peptides of very low and very high activity. Therefore, we
treated sets A and B separately, in addition to combining them
into pooled set, set A+B. The performance of the three models
was assessed using receiver operating characteristics (ROC)
curves (Supporting Information Supplementary Figure 8) and
the area under the ROC curves (AROCs). AROC values
approaching 1 indicate an increasing ability to accurately classify
data; AROC values close to 0.5 indicate a poor ability to classify.
The average AROC value for sets A and B and the combined
set A+B were found to be (mean =+ standard deviation, SD)
0.87 + 0.10, 0.83 4 0.12, and 0.80 £ 0.09, respectively. These
data show that the cross-validated performance of the models
to predict peptide activity was quite good. We integrated the
large number of models generated during the cross-validation
in a consensus approach to allow a combined, single prediction
for a given peptide. We did this using a “voting” system,
whereby each of the 20 models (10 each for set A, set B, and
the combined set A+B) was used to rank a set of test peptides.
If a peptide was ranked in the top 5% of the set, it received one
vote by the model. Because we used 30 models, a peptide could
receive up to 30 votes. When different peptides received the
same number of votes, these peptides were further ranked using
the average ranking produced by the 30 models. (For example,
a peptide receiving 20 votes with an average ranking of 500 in
a list of 100,000 peptides would be ranked higher than another
peptide with 20 votes and an average ranking of 600.)

Independent Model Testing. To perform an independent
assessment of this approach to identify highly active antibacterial
peptides, we created a random set of approximately 100,000
peptides in an independent test set using the same global amino
acid proportions as set B (see Supporting Information Supple-
mentary Figure 1). When we calculated the 44 QSAR descriptors
for each peptide, a modest number of peptides yielded values
that were >15% outside the range of descriptor values encoun-
tered in sets A and B and were not considered further, because
it is believed that this would lead to less reliable performance
of the models. This left a total of 99,577 test peptides. Each of
these peptides was ranked numerically using a voting system
as described below. Because these models were intended to
classify peptides as active or inactive, rather than to predict
actual activity levels, the ranked list of test peptides indicated
the likelihood that a peptide is highly active. Interestingly despite
the very large difference in predicted activities, the peptides in
each quartile had rather similar bulk physical properties (charge,
hydrophobicity, hydrophobic moment) (Table 1; Supporting
Information Supplementary Table 5), indicating the importance
of using a broad variety of descriptors in neural network assisted
modeling.

To independently evaluate these predictions of peptide
activity, we selected and synthesized a total of 200 candidate
peptides comprising sets of 50 candidate peptides at four
positions of ranking. Quartile 1 (Q1) peptides were ranked in
the topmost 50 positions and considered to be the most likely
to be more active than control. Quartile 2 (Q2) peptides were
ranked at the start of the second quartile, positions 24,895—24,944,
and thus considered likely to be more active than control.
Quartile 3 (Q3) peptides were ranked at the end of the third
quartile, positions 74,633—74,682, and considered likely to be
less active than control. Quartile 4 (Q4) peptides were ranked
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Table 2. Predicted Activity Rank and Experimental ICs, Values for Selected Test Peptides®

peptide rank quartile sequence cumulative vote measured rel 1Csg charge hydrophobic fraction hydrophobic moment
1 1 RWRWKRWWW 29 0.25 4 0.56 1.48
2 1 RWRRWKWWW 29 0.40 4 0.56 1.96
3 1 RWWRWRKWW 29 0.28 4 0.56 2.11
8 1 KIWWWWRKR 27 0.13 4 0.56 2.06
9 1 RWRRWKWWL 27 0.08 4 0.56 2.12
10 1 KRWWKWIRW 27 0.04 4 0.56 4.65
20 1 WRWWKIWKR 26 0.14 4 0.56 4.8
36 1 KRWWKWWRR 25 0.13 5 0.44 5.9
45 1 WKRWWKKWR 25 0.20 5 0.44 4.7
48 1 WKKWWKRRW 25 0.19 5 0.44 2.4
24,895 2 IRMWVKRWR 0 0.61 4 0.56 4.24
24,896 2 RIWYWYKRW 0 0.36 3 0.67 4.06
24,897 2 FRRWWKWFK 0 0.12 4 0.56 5.40
24,901 2 LRWWWIKRI 0 0.33 3 0.67 0.99
24,910 2 RKRLKWWIY 0 0.18 4 0.56 2.0
24,913 2 KKRWVWIRY 0 0.22 4 0.56 1.0
24,915 2 KWKIFRRWW 0 0.16 4 0.56 35
24,919 2 RKWIWRWFL 0 0.15 3 0.67 2.8
24,921 2 IWWKWRRWV 0 0.29 3 0.67 35
24,944 2 RRFKFIRWW 0 0.24 4 0.44 2.1
74,655 3 AVWKFVKRV 0 8.18 3 0.67 4.5
74,658 3 AWRFKNIRK 0 9.20 4 0.44 1.8
74,665 3 KRIMKLKMR 0 6.50 5 0.44 4.0
74,673 3 KIRRKVRWG 0 10.55 5 0.33 2.02
74,674 3 AIRRWRIRK 0 4.62 5 0.44 5.94
74,675 3 WRFKVLRQR 0 7.08 4 0.44 4.20
74,677 3 FMWVYRYKK 0 151 3 0.67 1.81
74,678 3 RGKYIRWRK 0 3.83 5 0.33 4.94
74,679 3 WVKVWKYTW 0 5.64 2 0.67 2.41
74,680 3 VVLKIVRRF 0 25.00 3 0.67 1.86
99,568 4 GRIGGKNVR 0 9.12 3 0.22 4.30
99,569 4 NKTGYRWRN 0 8.33 3 0.22 2.75
99,570 4 VSGNWRGSR 0 8.54 2 0.22 2.67
99,571 4 GWGGKRRNF 0 7.38 3 0.22 1.13
99,572 4 KNNRRWQGR 0 6.45 4 0.11 2.88
99,573 4 GRTMGNGRW 0 6.93 2 0.22 1.40
99,574 4 GRQISWGRT 0 8.04 2 0.22 1.94
99,575 4 GGRGTRWHG 0 8.60 3 0.11 2.63
99,576 4 GVRSWSQRT 0 8.50 2 0.22 2.56
99,577 4 GSRRFGWNR 0 8.10 3 0.22 0.58

@ Forty peptides are shown from the 200 total candidate peptides. Hydrophobic moment is given using the Eisenberg scale.

at the end of the fourth quartile, positions 99,528—99,577, and
considered most likely to be less active than control. These 200
predicted peptides were synthesized and assayed for activity
using the lux assay. As summarized in Table 1, the activity was
predicted very accurately by the system. Of the 50 peptides in
the most likely active set (Q1), 94% were found to be more
active than control. Of the set considered less likely to be active
(Q2), 64% were better than control. Of the peptides predicted
to be much less active (Q3), 88% had lower activity than control.
In the set considered least likely to be active (Q4), all (100%)
were less active than control. All 200 candidate peptides are
shown in the Supporting Information Supplementary Table 5
along with the rank, cumulative vote, experimentally determined
rel 1Cso values, and selected physical properties (charge,
hydrophobic fraction, and hydrophobic moment).

Ten peptides from each quartile are shown in Table 2 to
permit discussion. Consistent with the bulk features of the entire
library of sequences, for these peptides the charge and hydro-
phobicity showed a large degree of overlap for most quartiles.
Only certain of the peptides from Q4 showed a noticeable
difference in these physical properties, specifically in showing
a lower charge and hydrophobicity. The importance of charge,
hydrophabicity, and amphipathicity for antibacterial activity of
peptides is well-known.®?> However, in these groups of peptides
there was a clear difference only between the most active and

least active sets (Q1 and Q4) in terms of charge and hydro-
phobicity, whereas the differences in activity across all quartiles
were quite dramatic. A graphic example that these properties
are by themselves insufficient to make predictions can be
observed by comparing peptides 10 and 74,675 that have very
similar values for charge (+4), hydrophobicity (0.44—0.56), and
hydrophobic moment (a measure of amphipathicity; 4.2—4.65),
but have rel 1Cs, values that differ by >100-fold (0.04 and 7.1).
This demonstrates that the success in predictions is not based
on identifying potent peptides using previously known charac-
teristics.

Antibacterial Activity of Predicted Peptides against
Resistant Strains. A selection of 18 of these 200 peptides was
synthesized in bulk and tested against a large variety of drug-
resistant bacterial pathogens (Table 3). A total of 13 peptides
from quartiles 1 and 2 with high activity and 5 peptides from
quartile 3 with low assayed activity were evaluated for their in
vitro effect (MIC activity) against several of the most multidrug-
resistant and problematic pathogens including strains of mul-
tidrug-resistant P. aeruginosa, methicillin-resistant Staphylo-
coccus aureus (MRSA), Enterobacter cloacae with derepressed
chromosomal [-lactamase, extended spectrum [-lactamase
producing Escherichia coli and Klebsiella pneumonia, and
vancomycin-resistant Enterococcus faecalis and Enterococcus
faecium (VRE). Peptides from the first and second quartiles had
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significant in vitro inhibitory activity against antibiotic-resistant
bacteria. Moreover, some peptides from the first quartile, such
as 8 and 9, exhibited MICs of 0.3—10 «M against most of the
tested “superbugs”, compared to the only antimicrobial peptide
to show efficacy to date in advanced clinical trials, MX-226,°
which exhibited MICs of 10—76 uM.?? These results character-
ize the developed peptides as excellent antibiotic candidates for
treating some of the most recalcitrant and dangerous human
infections. As reported elsewhere,?* two other peptides identified
from the first quartile were also found to be protective against
S aureus infection in animal models.

Materials and Methods

Electron Microscopy of AMPs. TEM micrographs of thin
sections of P. aeruginosa were untreated and treated with Bac2A
(sequence RLARIVVIRVAR) at the MIC (50 ug/mL) for 1 h at
37 °C. For control, bacteria were mock incubated and prepared for
embedding/thin section electron microscopy in the same way as
the peptide-treated bacteria. SEM micrographs of P. aeruginosa
were prepared for control untreated and Bac2A-treated (50 ug/mL).
Bacteria were incubated with Bac2A for 1 h at 37 C before fixation
and preparation for SEM.

Empirical Peptide Sequences. Two experimental sets of pep-
tides were created, one consisting of 933 peptides (set A) and
another with 500 peptides (set B). Peptide sequences in these sets
were selected randomly on the basis of the amino acid composition
(Supporting Information Supplementary Figure 2) of the most active
peptides from prior experiments. The amino acid proportions for
set A were determined on the basis of previous amino acid
substitution studies,?* and proportions for set B were adjusted on
the basis of the early analysis of set A activities. For modeling
(described below) three training sets were prepared, consisting of
the set of 933 peptides (set A), the set of 500 peptides (set B), and
a set created from combining the 933 and 500 peptide sets (set
A+B).

A set of 100,000 random peptide sequences were generated with
the same amino acid proportions as used for set B. A total of 311
peptides were removed because they were either duplicates or
contained QSAR descriptors that differed by >15% from the range
of those assessed for the training sets, leaving 99,577 peptides (the
test set). Peptides from this set were evaluated in silico, and 200
(50 from each quartile) were selected for synthesis and assay.

Peptide SPOT Synthesis and Screening. SPOT synthesis of
peptides in arrays was performed as previously described.?*2®
Briefly, peptides were synthesized on cellulose support with a
pipetting robot using two glycine residues as linker. Peptides were
cleaved from the dried membrane in an ammonia atmosphere,
resulting in free peptides with two glycines at the amidated C
terminus due to the linker sequence. The peptide spots were punched
out and transferred to 96-well microtiter plates in sets of 10 along
with a positive control peptide (Bac2A) and an unrelated peptide
(GATPEDLNQKLS) or an empty well for negative control. An
overnight culture of P. aeruginosa strain H1001 (fliC::luxCDABE)
was diluted at 1:500 ratio with 100 mM Tris-HCI buffer (pH 7.3),
20 mM glucose. This diluted culture was added to the microtiter
plate wells (100 uL/well) containing the peptide spots and controls.
After 30 min of incubation, serial dilutions were performed from
the membrane spots to successive rows of the plate. Luminescence
of the P. aeruginosa PAO1 strain H1001 containing luciferase gene
cassette ITUXCDABE was measured at 4 h using a Tecan Spectra
Fluor Plus (Tecan US). Peptides were assayed in dilution series in
sets of 10 peptides with one control peptide Bac2A per series.

Calculation of Peptide Activity. The luminescence of each
peptide in a dilution series was fit to the following function (1)
independently for each peptide, after luminescence data were
normalized to 1.0 for the most dilute luminescence point for each
peptide. This function had the form of a sigmoid curve consisting
of two plateaus with a smoothly varying region joining them.
Parameters of the function described the height of the plateau, the
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position of the center of the slope at half the maximum lumines-
cence, and the slope at the center. Estimation of parameters was
performed using custom C software using Numerical Recipes in
C.27

L
- 1+ e*ZSKX*Xuz)

max

L o))

In this function, Ly controlled the maximum height of the curve,
S controlled the slope, and X, was the value of x giving
luminescence of half of the maximum luminescence. The values
of x were in dilution steps with values from 0, for the initial
concentration, to 7 (after seven dilutions); these corresponded to
changes in concentration C

C=C2” )

where Cy was the initial concentration of peptide in the undiluted
well. We were interested in calculating the concentration of peptide
that reduced the number (and hence the luminescence) of viable
energized bacteria by 50%, the 1Cso. From these equations we could
state the I1Csg as

ICsp = Clxyp) = Co2 ™" (3)

However, we could eliminate the need to determine the initial
concentration of peptide by reporting the activity of peptides as rel
ICso Vvalues: the ratio of 1Cs, for the experimental peptide to the
ICso for Bac2A. Values of rel 1Csy < 1.0 mean the peptide is more
active than Bac2A because a lower concentration yields the same
reduction in bacterial numbers. For peptides with very low or zero
activity, curve fitting was problematic. When the luminescence of
a well for an undiluted peptide was >50% of the maximum
luminescence for the peptide at high dilutions, the 1Cs, concentration
was not observed even at the highest peptide concentration used.
Here, the peptide was considered to be inactive and assigned a rel
I1Cs value of 25 (the approximate lower limit of activity that could
be measured).

For sets A and B, seven dilution points were used in the
calculation of rel ICs due to frequent artifacts in the last dilution
row (changes in luminescence were observed that were inconsistent
with the expected profile). For the 200 peptides taken from the
independent test set, the rel 1Cso was determined from all eight
dilution points for each peptide, because these artifacts were largely
eliminated in later measurements.

QSAR Descriptors. The QSAR descriptors used in this study
are shown in Supporting Information Supplementary Table 1. The
“inductive” QSAR descriptors used in this study were previously
described.*” An initial set of 77 QSAR descriptors was calculated
for each peptide in the two training and test sets using MOE
(Molecular Operating Environment, 2005, Chemical Computing
Group Inc., Montreal, Canada). For purposes of model training and
screening, the peptide structure was optimized on the basis of an
initial linear structure followed by potential energy minimization
of each molecule using MMFF94 force-field calculations®® with
structure optimization done without including interactions with other
molecules. [For determining model sensitivity to peptide structural
conformation, we also performed prediction of set A peptide
activities using MMFF94 force fields with peptide structures in (1)
initial (straight) peptide backbone or structures resulting from energy
minimization (2) in gas or (3) using a Born implicit solvation model.
Comparison of predictions is in Supporting Information Supple-
mentary Table 2.]

The atomic types have been assigned according to their name,
valence state, and formal charge of constituent atoms, as defined
within MOE. QSAR descriptors were calculated using custom SVL
scripts within the MOE environment. The inductive QSAR variables
can be computed by the following equations
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where R = covalent atomic radius, r = interatomic distance, Q; =
formal charge of atom j, y = inductive electronegativity, Rs = steric
constant, o* = inductive constant, AN = inductive partial charge,
and » and s = inductive analogues of chemical hardness and
softness, respectively.

It should be noted that the variables indexed with j subscript
describe the influence of a single atom on a group of atoms G
(typically the rest of the N-atoms molecule), whereas G indices
designate group (molecular) quantities. The linear character of these
equations makes inductive descriptors readily computable and
suitable for sizable databases and positions them as appropriate
parameters for large-scale QSAR models. Resources using the R
language for statistical computing (http://Awww.r-project.org)®® were
used for all following steps. Each descriptor in the training and
test sets was normalized to the range encountered in training peptide
sets A and B. A cross-correlation (Pearson) was performed on the
values of descriptors in the set of all peptides. The descriptors were
ordered according to a priority number (indicated in Supporting
Information Supplementary Table 1) to prioritize descriptors. When
a descriptor correlated with one or more other descriptors at >0.95
or <—0.95, the descriptor with the lowest priority number was
retained and the others were dropped from use in modeling. This
left a final set of 44 descriptors (Supporting Information Supple-
mentary Table 1).

Hydrophobic moments were calculated for comparison purposes
(Table 2; Supporting Information Supplementary Table 5) and not
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used in ANN modeling. These were calculated using the hmoment
utility in EMBOSS®® modified to utilize the Eisenberg scale.®*

Training and Validation Data Sets. For each of the three
training sets of peptides described above (set A, set B, and set
A+B), the peptides were classified by considering the top 5% of
rel 1C5, values to be active peptides and assigned the activity value
of 1 in the data sets for training the ANNS; other activity values
were assigned 0. A stratified 10-fold cross-validation was performed
on the three sets, resulting in 10 models for each set for a total of
30 models. Briefly, to create the cross-validation data sets, 10% of
the active peptides in the training set (one of set A, set B, or set
A-+B) were randomly assigned to each of 10 lists. Then 10% of
the inactive peptides in the training set were randomly assigned to
each of 10 lists. One list of actives was combined with one list of
inactives, to create 10 lists of combined active and inactive peptides.
Using one of these lists as the peptides for a validation data set,
the other 9 were used as the corresponding training set. This was
repeated a total of 10 times to create 10 validation sets and 10
training sets. This creation of 10-fold cross-validation sets was
performed separately for each of the training sets (A, B, and A+B).

Test Data Set. To evaluate the voting system’s ability to predict
peptide activity, we selected a set of 100,000 peptide sequences
according to the amino acid frequencies used in set B. QSAR
descriptors were calculated as described above. The maximum and
minimum values of each of the 44 descriptors were compared to
the range present in the set A and B training data. When a peptide
in the test data was outside 15% above or below the range in the
training data, the test peptide was dropped from the test set, leaving
a total of 99,577 peptide sequences.

Model Training. Exploratory data analysis was performed on
set A data using PCR and PLSR to identify significant variables.
Analysis was performed using the pls package®* from the R Project
(http://www.r-project.org).?®

ANNSs were constructed and evaluated using SNNS (Stuttgart
Neural Network Simulator, version 4.2, from University of Tiib-
ingen, Stuttgart, Germany, available at http://www-ra.informatik.uni-
tuebingen.de/SNNS/). The networks (Supporting Information Supple-
mentary Figure 7) consisted of 44 input nodes (one for each QSAR
descriptor as described above), 10 nodes in one hidden layer, and
1 output node; all were fully connected. The output node values
for training were 0 for not active, and 1 for active. Networks were
initialized using randomized weights.

Model training was performed using pairs of training and
validation data sets generated for the 10-fold cross-validation
described above. Therefore, 10 models were created for each of
the training sets (set A, set B, and set A+B) for a total of 30 models.
Training was performed on each training data set using the standard
back-propagation learning function with parameters o = 0.2 and
dmax = 0. The update function used topological order with shuffled
order of training patterns. For each cycle of training, the validation
data set was evaluated. As the network trained, network parameters
giving a minimum error on the validation set were stored. After
200 training cycles with no new minimum model error found, all
network weights were jogged by 2% to attempt to escape local
minima; weights that show >95% correlation during propagation
were jogged by 5%. Training continued and was terminated after
an additional 200 cycles with no new minimum validation error
encountered. Performance measures such as ROC curves and areas,
sensitsié/ity, and specificity were calculated using the ROCR package
in R.

In Silico Ranking and Selection of Test Peptides. To test the
predictions of the ANNSs, all peptides in the test set were evaluated
by all 30 ANNSs, and the combined predictions were integrated into
a single ordering of the test peptides as follows. Each peptide in
the test set was assigned a ranking by each ANN. If a test peptide
appeared in the top 5% of all peptides in the test set for an ANN,
it received one “vote” to indicate the model suggested it to be highly
active. Therefore, a test peptide may receive up to 30 votes from
the total of 30 ANNSs. Peptides were ranked by number of votes
with the relative ordering of peptides receiving the same number
of votes determined by the average of the rankings of all ANNs.
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Sets of 50 peptides at four positions of overall ranking were
selected to independently evaluate the system’s ability to predict
peptide activity and inactivity. Quartile 1 (Q1) peptides were ranked
in the topmost 50 positions and considered the most likely to be
more active than control. Quartile 2 (Q2) peptides were ranked at
the start of the second quartile, positions 24,895—24,944, and
considered likely to be more active than control. Quartile 3 (Q3)
peptides were ranked at the end of the third quartile, positions
74,673—74,682, and considered likely to be less active than control.
Quartile 4 (Q4) peptides were ranked at the end of the fourth
quartile, positions 99,568—99,577, and considered to be most likely
less active than control. These 200 predicted peptides were
synthesized and assayed for activity as described above.

Minimal Inhibitory Concentration (M1C) Determination. The
MIC of the peptides was measured as described in ref 26. Briefly,
a modified broth microdilution method was used. The peptides
synthesized in bulk were dissolved and stored in glass vials. Peptide
purity was assessed by HPLC and MS as shown in Supporting
Information Supplementary Table 6 (15 of the 18 peptides have a
purity of >95%).The assay was performed in sterile 96-well
polypropylene microtiter plates (catalog no. 3790, Costar, Cam-
bridge, MA). Serial dilutions of the peptides to be assayed were
performed in 0.01% acetic acid containing 0.2% bovine serum
albumin at 10-fold the desired final concentration. Ten microliters
of the 10-fold concentrated peptides was added to each well of a
96-well polypropylene plate containing 90 L of MH medium per
well. Bacteria were added to the plate from an overnight culture at
a final concentration of (2—7) x 10° CFU/mL and incubated
overnight at 37 °C. The MIC was taken as the concentration at
which no growth was observed.

MIC analyses were done on a panel of bacterial pathogens that
were hoth susceptible and resistant to common antibiotics. P.
aeruginosa PAOL1 strain H10319, P. maltophilia ATCC 13637, S
aureus ATCC 2592319, E. faecalis ATCC 292129, and E. cloacae
218R, constitutively expressing class C chromosomal S-lactamase
31, were from our laboratory strain collection. A methicillin
-resistant S. aureus (MRSA) clinical isolate was kindly provided
by Anthony Chow (Vancouver General Hospital, Vancouver,
Canada). Two K. pneumoniae and two E. coli clinical isolates
expressing extended spectrum f-lactamases (ESBL) were kindly
provided by George Zhanel (Health Sciences Centre, Winnipeg,
Canada). VVancomycin-resistant clinical isolates of E. faecalis and
E. faecium were obtained from Ana M. Paccagnella (BC Centre
for Disease Control, Vancouver, Canada). Three clinical isolates
(9, 198, and 213) of multidrug-resistant P. aeruginosa were kindly
provided by Carlos Kiffer (University of S&o Paulo, Brazil). These
isolates all have resistance to piperacillin/tazobactam, Meropenem,
ceftazidime, ciprofloxacin, and cefepime, and 9 is also polymyxin
B resistant. Three P. aeruginosa clinical isolates of the Liverpool
epidemic strain (LES) (H1027, H1030, and LES400) 32 were all
kindly provided by Craig Winstanley (University of Liverpool,
U.K.). LES400 was resistant to gentamicin and tobramicin, whereas
H1030 showed resistance to colistin, amikacin, gentamicin, and
tobramicin. All tested bacterial strains were categorized as biohazard
level 2 pathogens.

Conclusions

We have demonstrated in this study the specific methodology
used in the first application of atomic resolution 3D QSAR
methodology prediction of antibacterial activity to a large data
set of diverse peptides. With the availability of large numbers
of synthetic peptides and a rapid assay to determine their
antibacterial activity, larger sets of data on peptide sequence
and activity can now be created. On the basis of two random
libraries containing a total of >1400 peptides, we developed
artificial network models that predict and rank the relative
activities of novel antimicrobial peptides with remarkable
accuracy: in an independent test set of 100,000 virtual peptides,
94% of the 50 highest ranked peptides predicted to be highly
active were found to be highly active.

Fiell et al.

In addition to creating more complex models that utilize the
inductive QSAR methodology, the availability of high-quantity
and -quality peptide data also allows more rigorous training and
evaluation of the machine learning techniques. We consider the
methodology described here to be the first successful demon-
stration of high-throughput in silico screening of antibacterial
peptides for novel drug leads.
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