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Abstract: The drastic increase in multi-drug-resistant bacteria has created an urgent need for new therapeutic interventions,
including antimicrobial peptides, an interesting template for novel drug development. However, the process of optimizing peptide
antimicrobial activity and specificity using large peptide libraries is both tedious and expensive. Here we confirm the use of a
mathematical model for prediction, prior to synthesis, of peptide antibacterial activity toward the antibiotic resistant pathogen
Pseudomonas aeruginosa. By the use of novel descriptors quantifying the contact energy between neighboring amino acids,
as well as a set of inductive and conventional QSAR descriptors, we were able to model the antibacterial activity of peptides.
Cross-correlation and optimization of the implemented descriptor values enabled us to build two models, using very limited sets
of peptides, which were able to correctly predict the activity of 85 or 71% of the tested peptides, within a twofold deviation
window of the corresponding previously assessed IC50 values, measured earlier. Though these two models were significantly
different in size, they demonstrated no significant difference in their predictive power, implying that it is possible to build powerful
predictive models using even small sets of structurally different peptides, when using contact-energy descriptors and inductive
and conventional QSAR descriptors in the model design. Copyright  2007 European Peptide Society and John Wiley & Sons,
Ltd.
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INTRODUCTION

Bacterial resistance has increased dramatically over the
past decade [1], presenting a huge global health threat
and a challenge for antimicrobial drug developers [2].
Although small molecules still dominate drug discovery,
peptides have recently been recognized as suitable leads
in several areas of drug discovery owing to their high
affinity and specificity toward their targets. Importantly,
the toxicity profiles of peptide-based therapeutics are
usually very favorable [3]. At the same time, the
potential rapid renal clearance and poor in vivo stability
of peptides resulting from protease degradation can
contribute to their short half-life. Taken together with
the suggestion of low bioavailability, these arguments
have been typically used to argue against peptide lead
development. However, Scott et al. [4] recently reported
an innate defense-regulator peptide that sustained
immunomodulatory activity in an in vivo model for
54 h. In addition, peptide-based antimicrobials are
without doubt suitable for topical applications [5],
offering a decreased potential for resistance induction
[6] compared to other antimicrobials.
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Large-scale screening projects have involved the
screening of both naturally occurring peptides and
chemical and genetic/recombinant peptide libraries in
the search for new lead molecules [7,8]. Unfortunately
such manual or semiautomated techniques are quite
labor intensive and expensive. Computer-aided predic-
tions of peptide antimicrobial activity using soft inde-
pendent modeling of class analogy (SIMCA), and incor-
porated principal component analysis (PCA)/partial
least squares projection to latent structures (PLS) algo-
rithms, have also demonstrated some success [9–13].
However, a persistent problem with this type of math-
ematical modeling has been that no primary struc-
ture information has been implemented in the models,
thereby preventing the effective analysis of peptides
with large structural diversities. We recently attempted
to solve this problem by introducing contact energy
between neighboring amino acids [14] as a descriptor.
Although this ignores all intermolecular interactions
involved in determining three-dimensional structure,
except for those between neighboring amino acids in
the primary structure, this implementation resulted in
a rather powerful predictive model [15]. However, con-
cerns regarding the use of such contact-energy descrip-
tors remain in an over-simplified fashion. Therefore, in
this paper we examine the value of using contact-energy
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descriptors in the design of PLS models for antimicro-
bial peptides. The robustness of these descriptors in
combination with inductive and conventional quanti-
tative struture–activity relationship (QSAR) descriptors
[16] is demonstrated here by using only a small frac-
tion of the peptide libraries for model building and then
evaluating the predictive power of such models in esti-
mating the activity of the remaining peptides. We also
investigate whether these new descriptors are sufficient
for building predictive models with one class of peptides
to permit the prediction of the activity of structurally
diverse antimicrobial peptides.

MATERIALS AND METHODS

Biological Data

The published data from two single substitution libraries
(Bac034 and Bac2A), containing 216 and 228 peptides respec-
tively, were used [17,18]. Peptide antibacterial activity was
evaluated with a luciferase-based assay using Pseudomonas
aeruginosa PAO1 strain H1001, measuring IC50 (or the related
measurement EC50, see below) concentrations, in addition to
conventional minimal inhibitory concentration (MIC) analysis
on selected peptides.

Mathematical Approach

The use of specific descriptor values dealing with amino
acid hydrophilicity or hydrophobicity, size and charge-
related properties [19] was as previously described, used for
successful modeling of the antimicrobial activity of peptides
[9–13,20]. Similarly, the implementation of primary structural
information on peptides into QSAR models, by using contact
energy between neighboring amino acids [14], as one of the
descriptors was applied as described previously [15].

PCA and partial least squares PLS were done as described
earlier [15] to analyze the structure–activity relationship of
the peptides in the Bac034 library, and to verify the value
of contact energy and inductive and conventional QSAR
descriptors [16]. Merged and separate models of both the
Bac034 and Bac2A libraries were made to investigate if they
could be used to predict the biological activity of peptides with
unrelated sequences and structures. The strength of these
types of predictive models was evaluated by building stringent
models on smaller fractions of the peptide library, predicting
the activity of the peptides excluded from the model.

Software

The program package Simca-P 10.0 from Umetrics, Umeå,
Sweden, was used for PCA/PLS calculations. The theoreti-
cally derived amino acid descriptors were centred prior to
calculations, while the antibacterial activity and the remain-
ing descriptors were all scaled to unit variance, to ensure that
they had equal influence in the model. A Chi-squared test was
used to confirm statistical differences between the predictive
power of different sub-models of the 50-50 and 25-25 model,
as calculated using PRISM (GraphPad Software Inc., version
3.0, San Diego, CA).

RESULTS AND DISCUSSION

Synthesis of large peptide libraries on cellulose mem-
branes [21] has enabled us to investigate hundreds of
peptides with sequences related to the naturally occur-
ring host-defense peptide bactenecin, in an attempt to
optimize and understand the determinants of antibacte-
rial activity for these peptides and their mode of action.
The basis for the current studies were two substitution
libraries based on peptides Bac2A [18] and its scram-
bled sequence variant Bac034 [17], containing 216 and
228 different peptides, respectively.

Although cellulose libraries are relatively affordable,
a considerable amount of work is warranted in
understanding what makes a peptide active, since
the ability to predict activity prior to synthesis would
streamline peptide design. Part of this work can be done
by statistical analysis and mathematical prediction
modeling using PLS. Until recently PLS modeling of
antimicrobial peptides solely utilized specific amino
acid descriptors [19], limiting the modeling to peptides
with significantly similar primary structures; but at
the same time it required the overall amino acid
composition of the peptides to be different. To illustrate
this, we generated a model, containing all the peptides
from the Bac034- and Bac2A-libraries, with only two
significant components explaining 72 and 25% of the
variation in the X- and Y-matrices, respectively (cross-
validation Q2 = 19%) (Table 1). However, we recently
demonstrated that, by using amino acid contact-energy
descriptors and a set of inductive and conventional
QSAR descriptors, we were able to incorporate primary
structure information into the modeling step for
the Bac2A library, thereby significantly increasing
the predictive ability of models and enabling the
explanation of 78 and 82% of the variation in the X and
Y matrices, respectively (cross-validation Q2 = 65%)
[15].

The amino acid contact-energy descriptors were
derived from an average value of residue–residue
contacts in a set of PDB-available proteins; therefore
direct implementation of these values to the described
peptides may not be entirely correct or precise.
Questions remained regarding the accuracy in modeling
the Bac2A library with contact-energy descriptors and
whether there was a sequence-specific element to our
earlier successes. Therefore we applied these strategies
and descriptors to a different library (Bac034). By
using the same cross-correlation and optimization
steps in the model design as described earlier for
the Bac2A library [15], we built a separate Bac034
model, explaining 86 and 80% of the variation in
the X and Y matrices, respectively (cross-validation
Q2 = 57%) (Table 1). This confirms the value of using
amino acid contact energy as a descriptor for this type of
modeling experiment, and indicates that its success is
not peptide-sequence dependent. To evaluate whether
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Table 1 The X-matrix in all the models contains the z-scale descriptors, while the content of the Y-matrix
is dependent on the different models, implementing contact energy (CE) and/or inductive and conventional
QSAR descriptors (QSAR), the latter being optimized and cross-correlated as described earlier [15]. Comp. is
the number of significant components. R2X and R2Y are respectively the fractions of the sum of squares of
all the X’s and Y’s explained by the current component, respectively. Q2 is the fraction of the total variation
of the Y’s that can be predicted by a component according to cross-validation, and Q2cum is the cumulative
Q2 for the extracted components

Model Y-matrix Comp. R2X R2Y Q2cum

Bac034 + Bac2A IC50 + EC50 2 72.1 24.7 18.9
Bac034 CE + QSAR + EC50 21 86.1 79.9 57.3
Bac034 + Bac2A CE + QSAR + EC50 + IC50 17 92.4 82.2 76.9
50-50 model CE + QSAR + EC50 + IC50 17 92.4 82.5 77.3
50-50 model—Bac2A subset CE + QSAR + IC50 19 82.0 75.4 58.4
50-50 model—Bac034 subset CE + QSAR + EC50 16 78.4 77.8 60.0
25-25 model CE + QSAR + EC50 + IC50 17 92.3 84.2 79.1
25-25 model—Bac2A subset CE + QSAR + IC50 22 86.3 77.9 56.8
25-25 model—Bac034 subset CE + QSAR + EC50 20 84.7 80.5 58.8

the implementation of contact-energy descriptors or the
inductive and conventional QSAR descriptors would
enable modeling of structurally different peptides,
an even more successful merged model of the two
libraries was constructed, explaining 92 and 82% of the
variation in the X- and Y-matrices, respectively (cross-
validation Q2 = 77%) (Table 1). Though the score plot
clearly divided the peptides from the two libraries into
two subgroups (data not shown), it demonstrates the
potential of building predictive models on peptides with
diverse primary structures.

We hypothesized that by implementing primary
structure descriptions of the peptides into the model
it would be possible to build robust predictive models
on a set of structurally diverse peptides, or use a model
of the Bac034-library and predict the activity of the
peptides in the Bac2A-library, or vice versa. To test this
hypothesis it was crucial to have one common read-out
from both libraries. IC50 is used in the lab as a screening
tool for estimation of the MICs of peptides and there
appears to be a fairly good correlation between these two
parameters (unpublished results). EC50 was obtained
for the Bac034 library in a similar way to IC50 for Bac2A,
except that EC50 was calculated without experimentally
derived, extrapolated baseline corrections; however, it
was initially assumed that there should be a similar
relationship between MIC and EC50.

Thus a selected number of peptides tested for
IC50/EC50 and MIC were used to predict estimated MIC
values for peptides in both libraries by the use of linear
regression (data not shown). By attempting predictions
separately for the Bac034 and Bac2A libraries, we were
not able to extrapolate the derived relationship for
one library to predict, with any significant accuracy,
the activity of peptides in the other library. This
probably reflects the above observation that these
peptides clearly separated into two distinct classes,

and may suggest that IC50 and EC50 are significantly
different measurements (at least for the two libraries
investigated). An approach to overcome this would be to
include peptides from both libraries in a single, merged
model. Therefore half the peptides from each library
were randomly selected, combined and trained, using
the optimal settings described earlier [15], in an attempt
to probe the potential of such mixed peptide models
(Table 1). The resultant 50-50 model had reasonable
predictive power, demonstrating an 85.1% success
in predicting the IC50 values of the excluded Bac2A
peptides (Table 2), which is similar to the success rate
of earlier Bac2A models [15].

In contrast, the 50-50 model had a relatively poor
predictive success of 33.9% of the Bac034 library. The
problem of predicting EC50 values may reflect on the
rather inaccurate nature of the EC50 values, indicating
that IC50 values, which incorporated background
corrections estimated from the experimental datasets,
are most likely a better way of assessing antibacterial
activity.

The recently published model of the Bac2A library,
developed by considering the activities of 90% of
measured peptides, demonstrated a predictive power
of 84% for the remaining randomly excluded 10%
of the peptides. Though this randomization approach
was repeated ten times, giving reproducible results,
bias might have been introduced by using so many
of the peptides in the data set to make predictions,
and it could be argued that there is limited utility in
predicting the activity of relatively few related peptides
(i.e. 1 in 10). To address this, and to confirm that this
mathematical approach would be useful with different
datasets, a new model (25-25 model) was built using
random selections of 25% of the peptides from both
libraries for model-building and attempting to predict
the remaining 75%. This model could explain 92%
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Table 2 Predictive power of the different models given in percentage correct predicted
peptides, evaluated in respect to correctly predicted; IC50 and EC50 values among
excluded peptides from the Bac2A and Bac034 library, respectively. Chi-square is the
statistically significant difference (confidence intervals of 95%) between the main model
(50-50 or 25-25) and the different submodels containing either only the Bac2A subset or
the Bac034 subset

Prediction model Bac2A Bac034

IC50 Chi-Square EC50 Chi-Square

50-50 model 85.1 33.9

No — Yes
50-50 model—Bac2A subset 76.7

P = 0.2031 P < 0.0001

50-50 model—Bac034 subset — 66.1

25-25 model 70.7 28.2

No — Yes
25-25 model—Bac2A subset 73.7

P = 0.7342 P = 0.0008

25-25 model—Bac034 subset — 48.5

of the variation in X- and 84% of the variation in
the Y -matrix, (cross-validation = 79%) (Table 1). When
examining its predictive ability, it became evident that
70.7% (121 peptides) of the excluded Bac2A peptides
could be predicted correctly with respect to their
measured IC50 values (Table 2). This drop in predictive
power compared to the power of the earlier published
Bac2A model [15] is probably a combined effect of
substantially reducing the number of peptides utilized
to develop the new model, and also the addition of a set
of structurally different peptides (25% of the Bac034
library) to the model. Evaluation of the 25-25 model
demonstrated the correct prediction of only 28.2% of
the EC50 values (Table 2), confirming that IC50 values
could be modeled with superior accuracy compared to
EC50 values.

To further evaluate the effect of merging two peptide
libraries in PLS modeling, new models were generated
by excluding either the Bac034 or the Bac2A datasets
from both the 50-50 model and the 25-25 model,
resulting in Bac2A and Bac034 subsets of both the
original models, respectively (Table 2). When comparing
these new models with the original models, it is evident
that Bac034 exclusion had no significant effect on
the accuracy of the model. However, Bac2A exclusion
resulted in a model with a significantly higher predictive
power. This may be explained by IC50 being a highly
accurate measurement, the inclusion of which will
cause problems in predicting less accurate EC50 values,
while exclusion of which will enable better modeling of
the EC50 values. The results strengthen the conclusion
that the success of a predictive model is highly
influenced by the accuracy of the parameters included
in the model design.

CONCLUSION
We have reconfirmed that contact-energy descriptors
can be used for implementing primary structure
information into PLS models, enabling modeling of
structurally diverse peptides. We have also successfully
built a predictive model on a limited selection of
peptides from two distinctly related peptide libraries,
and demonstrated its potential of correctly predicting
the activity of the excluded part of the library.
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