
Evaluating Different Descriptors for Model
Design of Antimicrobial Peptides with Enhanced
Activity Toward P. aeruginosa
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The number of isolated drug-resistant pathogenic
microbes has increased drastically over the past
decades, demonstrating an urgent need for new
therapeutic interventions. Antimicrobial peptides
have for a long time been looked upon as an
interesting template for drug optimization. How-
ever, the process of optimizing peptide antimicro-
bial activity and specificity, using large peptide
libraries is both tedious and expensive. Here, we
describe the construction of a mathematical
model for prediction, prior to synthesis, of pep-
tide antibacterial activity toward Pseudomonas
aeruginosa. By use of novel descriptors quanti-
fying the contact energy between neighboring
amino acids in addition to a set of inductive and
conventional quantitative structure–activity rela-
tionship descriptors, we are able to model the
peptides antibacterial activity. Cross-correlation
and optimization of the implemented descriptor
values have enabled us to build a model (Bac2a-
#2) that was able to correctly predict the activity
of 84% of the tested peptides, within a twofold
deviation window of the corresponding IC50 val-
ues, measured earlier. The predictive power, is an
average of 10 submodels, each predicting the
activity of 20 randomly excluded peptides, with a
predictive success of 16.7 ± 1.6 peptides. The
model has also been proven significantly more
accurate than a simpler model (Bac2a- #1), where
the inductive and conventional quantitative struc-
ture–activity relationship descriptors were
excluded.
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The increasing use of antimicrobials has resulted in an increasing
problem with drug-resistant bacterial and fungal pathogens (1,2).
This has created the need for the discovery and design of new anti-
microbial drugs. However, major difficulties have been experienced
in discovering new chemical structures with low host toxicity and
broad spectrum activity. We have suggested that cationic peptides
serve as a good template for the design of such a new generation
of antimicrobials (3).

Several cationic antimicrobial peptides have been demonstrated to
be quite effective in killing a wide selection of bacterial and fungal
pathogens, including Pseudomonas aeruginosa, which is the third
leading cause of hospital-associated infections and, as a result of
chronic lung infections, the leading cause of morbidity and mortality
in cystic fibrosis patients. Such peptides were initially demonstrated
to target the bacterial cytoplasmic membrane but it is now recog-
nized that many peptides translocate across the membrane and
interact with cytoplasmic targets (3,4). A variety of modes of action
have been ascribed to these peptides, but it has proven difficult to
relate these modes of action to particular peptide sequences, as
small changes can drastically affect structure (3,5). Thus, it has pro-
ven challenging to systematically design and optimize new peptides
with improved antimicrobial activity. Traditional design and optimiza-
tion studies of peptides are also known to be expensive and time-
consuming. However, production costs and the time required for
evaluation of activity can be drastically reduced by synthesis of
large peptide libraries on cellulose membranes and high-throughput
antibacterial testing (6) as demonstrated through design of a single-
substitution peptide libraries based on Bac2a, a linear peptide
derivative of the 12-amino acid bovine neutrophil peptide bactene-
cin (6,7). Another approach that has been used in streamlined pep-
tide design has been to develop mathematical models to explain
and predict the peptide activities. We have earlier demonstrated
the use of principal component analysis (PCA) to explain the bio-
logic activity of antimicrobial peptides (8,9). Partial least squares
projection to latent structures (PLS) is another technique that has
been used to build statistical models that can predict peptide activ-
ity prior to synthesis (10). A peptide library containing more than
217 000 theoretical peptide sequences was screened for theoretical
antimicrobial activity by the use of such a PLS technique, and the
results were verified by synthesizing a limited number of these pep-
tides and confirming their antimicrobial activity. However, larger
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number of peptides have never been predicted and verified in these
earlier studies. Another problem with the PCA ⁄ PLS approaches are
that peptides with the same amino acid content, but different pri-
mary sequences, may appear as identical peptides in the model.

In this study, we adapted the PCA ⁄ PLS approach and conventional
amino acid descriptors (11) to explain the activity of different pep-
tides generated in a large Bac2a peptide library (6). To inculcate
primary sequence information into the models, we introduced a
new descriptor, quantifying contact energies between neighboring
amino acids (12). We also introduced computer-simulated parame-
ters describing biophysical properties of the entire peptide (13) and
some well characterized quantitative structure–activity relationship
(QSAR) descriptors (as implemented within the MOE programs:
Molecular Operational Environment v. 2006.10, by Chemical Compu-
tation Group Inc., Montreal, Canada, 2006), in an attempt to more
easily distinguish between biologically active and inactive peptides.
All of these new descriptors were optimized and ⁄ or cross-correlated
to avoid the introduction of noise and ⁄ or highly correlating data in
the model. The predictive power of the model was then evaluated
by random exclusion of peptides from the data set, and the creation
of new models with the remaining peptides to examine if these
models built on subsets of peptides could predict the activity of the
200 excluded peptides.

Materials and Methods

Biologic data
The data from a single-substitution Bac2a-library containing 228
peptides was used in this study (6). The antibacterial inhibitory con-
centration IC50 of these peptides was evaluated using a luciferase-
based assay with P. aeruginosa PAO1 strain H1001, containing a
constitutively expressed luciferase gene (luxCDABE).

Mathematical approach
It has been previously demonstrated that each of the 20 natural
coded amino acids can be described by three specific descriptor
values dealing with their hydrophilicity or hydrophobicity (z1), size
(z2) and charge-related properties (z3) (Table 1; 11). These descrip-
tors encompass sufficient information to make it possible to explain
and compare different peptide sequences and their antibacterial,
antiviral, and anticancer activity (8–10,14–16). In an attempt to
incorporate information about the peptide primary sequence into
our predictions, we introduced, as a descriptor, the use of contact
energy between neighboring amino acids (Table 2; 12). In addition,
a set of 50 inductive molecular QSAR descriptors (13) and a set of
27 conventional QSAR descriptors were implemented to further dis-
criminate between the different peptides with almost identical
amino acid compositions. Thus, each peptide in the screening
library can be described by three descriptor values for each amino
acid (Table 1) a series of contact energy descriptors for each pair
of amino acids, in a sliding window fashion (Table 2), and 78 bio-
physical inductive and conventional QSAR descriptors (Table 3).

Principal component analysis is a multivariate projection method
designed to extract and display systematic variation in a data

matrix X, by transforming a large number of potentially correlated
variables into a smaller number of definitive and uncorrelated (inde-
pendent) variables called principal components. The main variability
in the data are accounted for in the first principal component, and
with progressively declining variability accounted in the second
component, and so forth.

With PLS, the primary matrix is divided into two matrices, one con-
taining the traditional z-descriptors (X-matrix) and one containing
the peptide biologic activities, the contact energy descriptors and
the inductive and conventional QSAR descriptors (Y-matrix). Correla-
tions between these two matrices are then calculated, using the
SIMCA-P 10.0 software package.

The antibacterial activity of the Bac2a library (6) was carefully ana-
lyzed using PLS modeling. Optimization of the PLS model required
the identification of potential cross-correlations in the inductive and
conventional QSAR descriptor sets. Thus, Pearson product moment
correlations were calculated with the exclusion criteria >0.95 or
<)0.95. The contribution of contact energies, and inductive and
conventional QSAR descriptors to the PLS model could vary sub-
stantially from component to component, and accordingly the contri-
bution level was investigated for the sum of the first six
components, setting an exclusion level at <0.5.

Different peptide activity prediction models were constructed with
either the contact energy descriptors, or the inductive and conven-
tional QSAR descriptors, or all three. The theoretical quality of the
optimized model was then evaluated. To confirm the predictive abil-
ity after descriptor optimization, 20 peptides were randomly
excluded from the Bac2a library a total of 10 times, resulting in 10
new models, with the already optimized descriptor settings. These
10 new models where then used to predict the antibacterial activity
of the excluded peptides.

Table 1: Descriptor scales z1, z2, and z3 for amino acid (11)

Amino acid Z1 Z2 Z3

Ala A 0.07 )1.73 0.09
Cys C 0.71 )0.97 4.13
Asp D 3.64 1.13 2.36
Glu E 3.08 0.39 )0.07
Phe F )4.92 1.30 0.45
Gly G 2.23 )5.36 0.30
His H 2.41 1.74 1.11
Ile I )4.44 )1.68 )1.03
Lys K 2.84 1.41 )3.14
Leu L )4.19 )1.03 )0.98
Met M )2.49 )0.27 )0.41
Asn N 3.22 1.45 0.84
Pro P )1.22 0.88 2.23
Gln Q 2.18 0.53 )1.14
Arg R 2.88 2.52 )3.44
Ser S 1.96 )1.63 0.57
Thr T 0.92 )2.09 )1.40
Val V )2.69 )2.53 )1.29
Trp W )4.75 3.65 0.85
Tyr Y )1.39 2.32 0.01
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Loading plots from the models were examined and used to evaluate
the importance of the different amino acids, and identification of the
theoretically most optimal amino acid compositions. The sequences
of this theoretical peptide were then compared with multiple-substi-
tution Bac2a analogs with known antibacterial activity (6).

Software
The program package SIMCA-P 10.0 from Umetrics (Ume�, Sweden)
was used for PCA ⁄ PLS calculations. The theoretically derived amino
acid descriptors (z1–z3) were centered prior to calculations, while
the biologic activity and the remaining descriptors were all scaled
to unit variance, to ensure they had equal influence in the model.
General two-tailed t-test and non-parametric test (paired t-test)
used to confirm statistically significant difference between the pre-
dictive power of Bac2a- #1 and #2 was calculated using PRISM

�

(GraphPad Software Inc., version 3.0, San Diego, CA, USA).

Results and Discussion

Over the past years, hundreds of peptides with sequences related
to the naturally occurring host defense peptide bactenecin have
been made, in an attempt to understand sequence requirements for
antibacterial activity. The basis for the current studies was a sin-
gle-substitution library based on Bac2a (6) containing 228 different
peptides (Table 4).

The peptide library was synthesized on a cellulose membrane
(17,18) and the peptide antibacterial activities against P. aeruginosa
were analyzed with a luciferase-based killing assay (6). This
reduced the cost of peptide synthesis in addition to providing a
high-throughput screening assay for peptide antibacterial activity.
However, to optimize this even further we attempted to create a
computer simulation model able to predict peptide biologic activities

prior to synthesis. Earlier work has taught us that specific amino
acid descriptors (11) can be used to explain and predict a variety of
different biologic peptide activities (8–10,14–16). However, such an
approach with these descriptors was clearly not informative for the
Bac2a library, resulting in only a single significant component
(Table 5). This can be explained based on the primary sequence of
the starting peptide, Bac2a (R1LARIVVIRVAR12). Bac2a is composed
of only five different amino acids, and thus single substitutions in
quite a few positions will create peptides with different primary
sequences, but the same amino acid content, e.g. the same amino
acid single substitution of R1, R4, R9, or R12 will result in four pep-
tides with different primary structure, but the same overall amino
acid content. By performing PLS modeling with only the specific
amino acid descriptors, these peptides with identical amino acid
content would be interpreted as identical, even though their bio-
logic activities in many cases are different, thus making it impossi-
ble to build a good model.

Contact energy descriptor model
By introducing amino acid contact energy descriptors, one value for
each pair of amino acids, in a sliding window fashion, it was possi-
ble to distinguish between the peptides with identical amino acid
contents but different sequences. It should be mentioned that these
contact energy descriptors are calculated from a large selection of
proteins and then transformed to reflect averaged interactions
between specific types of amino acids. Thus, they may give a
skewed reflection of the amino acid contact energies occurring in
peptides, and their meaningful contribution in PLS modeling of pep-
tides may vary. However, by using these values to describe the pep-
tides in the Bac2a library, we are adding primary structure
information to the PLS model, resulting in a model with 16 signifi-
cant components, explaining 78% and 84% of the variation in the
X- and Y-matrices, respectively (cross-validation Q2 = 79%; Table 5).
In the process of optimization of the contact energy descriptors,
examining their relative contribution to the model in the first six

Table 2: Contact energies given in dimensionless units (12)

Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr

Ala )2.72 )3.57 )1.7 )1.51 )4.81 )2.31 )2.41 )4.58 )1.31 )4.91 )3.94 )1.84 )2.03 )1.89 )1.83 )2.01 )2.32 )4.04 )3.82 )3.36
Cys )5.44 )2.41 )2.27 )5.80 )3.16 )3.6 )5.5 )1.95 )5.83 )4.99 )2.59 )3.07 )2.85 )2.57 )2.86 )3.11 )4.96 )4.95 )4.16
Asp )1.21 )1.02 )3.48 )1.59 )2.32 )3.17 )1.68 )3.4 )2.57 )1.68 )1.33 )1.46 )2.29 )1.63 )1.8 )2.48 )2.84 )2.76
Glu )0.91 )3.56 )1.22 )2.15 )3.27 )1.8 )3.59 )2.89 )1.51 )1.26 )1.42 )2.27 )1.48 )1.74 )2.67 )2.99 )2.79
Phe )7.26 )4.13 )4.77 )6.84 )3.36 )7.28 )6.56 )3.75 )4.25 )4.1 )3.98 )4.02 )4.28 )6.29 )6.16 )5.66
Gly )2.24 )2.15 )3.78 )1.15 )4.16 )3.39 )1.74 )1.87 )1.66 )1.72 )1.82 )2.08 )3.38 )3.42 )3.01
His )3.05 )4.14 )1.35 )4.54 )3.98 )2.08 )2.25 )1.98 )2.16 )2.11 )2.42 )3.58 )3.98 )3.52
Ile )6.54 )3.01 )7.04 )6.02 )3.24 )3.76 )3.67 )3.63 )3.52 )4.03 )6.05 )5.78 )5.25
Lys )0.12 )3.37 )2.48 )1.21 )0.97 )1.29 )0.59 )1.05 )1.31 )2.49 )2.69 )2.6
Leu )7.37 )6.41 )3.74 )4.2 )4.04 )4.03 )3.92 )4.34 )6.48 )6.14 )5.67
Met )5.46 )2.95 )3.45 )3.3 )3.12 )3.03 )3.51 )5.32 )5.55 )4.91
Asn )1.68 )1.53 )1.71 )1.64 )1.58 )1.88 )2.83 )3.07 )2.76
Pro )1.75 )1.73 )1.7 )1.57 )1.9 )3.32 )3.73 )3.19
Gln )1.54 )1.8 )1.49 )1.9 )3.07 )3.11 )2.97
Arg )1.55 )1.62 )1.9 )3.07 )3.41 )3.16
Ser )1.67 )1.96 )3.05 )2.99 )2.78
Thr )2.12 )3.46 )3.22 )3.01
Val )5.52 )5.18 )4.62
Trp )5.06 )4.66
Tyr )4.17
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Table 3: Inductive and conventional QSAR descriptors

Descriptor Characterization I ⁄ C I ⁄ E

a acc Number of hydrogen bond acceptor atoms C E
a don Number of hydrogen bond donor atoms C E
ASA Water accessible surface area C I
ASA) Water accessible surface area of all atoms with negative partial charge C E
ASA H Water accessible surface area of all hydrophobic atoms C I
ASA P Water accessible surface area of all polar atoms C I
ASA+ Water accessible surface area of all atoms with positive partial charge C E
Average EO neg Arithmetic mean of electronegativities of atoms with negative partial charge I E
Average EO pos Arithmetic mean of electronegativities of atoms with positive partial charge I E
Average hardness Arithmetic mean of hardnesses of all atoms of a molecule I E
Average neg charge Arithmetic mean of negative partial charges on atoms of a molecule I E
Average neg hardness Arithmetic mean of hardnesses of atoms with negative partial charge I I
Average neg softness Arithmetic mean of softnesses of atoms with negative partial charge I E
Average pos charge Arithmetic mean of positive partial charges on atoms of a molecule I I
Average pos hardness Arithmetic mean of hardnesses of atoms with positive partial charge I I
Average pos softness Arithmetic mean of softnesses of atoms with positive partial charge I E
Average softness Arithmetic mean of softnesses of all atoms of a molecule I E
b 1rotN Number of rotatable single bonds C I
EO equalized Iteratively equalized electronegativity of a molecule I E
FCharge Total charge of the molecule C I
Global hardness Molecular hardness – reversed softness of a molecule I I
Global softness Molecular softness – sum of constituent atomic softnesses I I
Hardness of most neg Atomic hardness of an atom with the most negative charge I E
Hardness of most pos Atomic hardness of an atom with the most positive charge I E
Largest neg hardness Largest atomic hardness among values for negatively charged atoms I I
Largest neg softness Largest atomic softness among values for positively charged atoms I E
Largest pos hardness Largest atomic hardness among values for positively charged atoms I I
Largest pos softness Largest atomic softness among values for positively charged atoms I E
Largest Rs i mol Largest value of atomic steric influence Rs (atom fi molecule) in a molecule I E
Largest Rs mol i Largest value of steric influence Rs (molecule fi atom) in a molecule I E
logP (o ⁄ w) Log of the octanol ⁄ water partition coefficient C I
logS Log of the aqueous solubility C I
Most neg charge Largest partial charge among values for negatively charged atoms I E
Most neg Rs i mol Steric influence Rs (atom fi molecule) OF the most negatively charged atom to

the rest of a molecule
I E

Most neg Rs mol i Steric influence Rs (molecule fi atom) ON the most negatively charged atom
in a molecule

I E

Most neg Sigma i mol Largest negative atomic inductive parameter r* (atom fi molecule) for atoms
in a molecule

I E

Most neg Sigma mol i Largest (by absolute value) negative group inductive parameter
r* (molecule fi atom) for atoms in a molecule

I E

Most pos charge Largest partial charge among values for positively charged atoms I E
Most pos Rs i mol Steric influence Rs (atom fi molecule) OF the most positively charged atom to

the rest of a molecule
I E

Most pos Rs mol i Steric influence Rs (molecule fi atom) ON the most positively charged atom in
a molecule

I E

Most pos sigma i mol Largest positive atomic inductive parameter r* (atom fi molecule) for atoms
in a molecule

I E

Most pos sigma mol i Largest positive group inductive parameter r* (molecule fi atom) for atoms in
a molecule

I E

mr Molecular refractivity C E
PC) Total negative partial charge C I
PC+ Total positive partial charge C I
RPC) Relative negative partial charge C E
RPC+ Relative positive partial charge C E
Smallest neg hardness Smallest atomic hardness among values for negatively charged atoms I E
Smallest neg softness Smallest atomic softness among values for negatively charged atoms I E
Smallest pos hardness Smallest atomic hardness among values for positively charged atoms I E
Smallest pos softness Smallest atomic softness among values for positively charged atoms I E
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components, it was demonstrated that the parameter describing the
contact between amino acids 3 and 4, and amino acids 11 and 12,
did not contribute any useful information. Thus, the contact energy
descriptors for these two positions were removed and an optimized
model was built, increasing the cross-validation to 82% (Table 5).
The lack of information contributed by the contact energy descrip-
tors in these two positions could be explained by the identical ala-
nine–arginine patterns. Naturally, descriptors dealing with contact
energy fall short when identical sequence patterns appear in any
given peptide sequence, and approaches are currently being devel-
oped to resolve this issue.

Inductive and conventional QSAR descriptor
model
The inductive and conventional QSAR descriptors were similarly
used to distinguish between the peptides with identical amino acid
content, and these descriptors were used in a new model (Table 4).
Both the inductive and the conventional QSAR descriptors are
molecular biophysical descriptors, thus the chance of cross-correla-
tion between these two descriptor sets was considered rather high.
To avoid the implementation of strongly correlating data into the

model, with the potential for causing bias, these descriptor sets
were evaluated using Pearson's correlation. This reduced the total
number of descriptors from 87 in total, to 26 inductive and 17 con-
ventional QSAR descriptors, resulting in a model that utilized 61%
of X-matrix to model 58% and predict 4% of Y-matrix (Table 5).
When investigating the contribution from the different inductive and
conventional QSAR descriptors it became clear that several of them
did not contribute significant information to the first six principal
components. Removal of these less important descriptors (during
optimization) resulted in a drastic increase in the predictive poten-
tial of the model, explaining 38% and 74% of the variation in the
X- and Y-matrix, respectively (cross-validation Q2 = 55%; Table 5).

Combined model using contact energy,
inductive and conventional QSAR descriptors
In the final modeling attempt we used the cross-correlated and
optimized descriptor sets obtained as described above. This data
set resulted in 17 significant components, explaining 78% and 82%
of the variation in the X- and Y-matrix, respectively (cross-validation
Q2 = 65%; Table 5). If only the final R2Y and Q2cum values are
taken into account, this model appears weaker than the model

Table 3: (Continued)

Descriptor Characterization I ⁄ C I ⁄ E

Smallest Rs i mol Smallest value of atomic steric influence Rs (atom fi molecule) in a molecule I E
Smallest Rs mol i Smallest value of group steric influence Rs (molecule fi atom) in a molecule I E
Softness of most neg Atomic softness of an atom with the most negative charge I E
Softness of most pos Atomic softness of an atom with the most positive charge I E
Sum hardness Sum of hardnesses of atoms of a molecule I I
Sum neg hardness Sum of hardnesses of atoms with negative partial charge I I
Sum neg sigma mol i Sum of all negative group inductive parameters r* (molecule fi atom) within a

molecule
I E

Sum pos hardness Sum of hardnesses of atoms with positive partial charge I E
Sum pos Sigma mol i Sum of all positive group inductive parameters r* (molecule fi atom) within a

molecule
I I

Total Abs Sigma mol i Sum of absolute values of group inductive parameters r* (molecule fi atom)
for all atoms within a molecule

I E

Total charge Sum of absolute values of partial charges on all atoms of a molecule I E
Total charge formal Sum of charges on all atoms of a molecule (formal charge of a molecule) I E
Total neg softness Sum of softnesses of atoms with negative partial charge I I
Total pos softness Sum of softnesses of atoms with positive partial charge I E
Total sigma mol i Sum of inductive parameters r* (molecule fi atom) for all atoms within a

molecule
I I

TPSA Polar surface area C E
vdw area van der Waals surface area calculated using a connection table approximation C E
vdw vol van der Waals volume calculated using a connection table approximation C E
vol van der Waals volume calculated using a grid approximation C E
VSA van der Waals surface area using polyhedral representation C E
vsa acc Approximation to the sum of VDW surface areas of pure hydrogen bond

acceptors
C E

vsa acid Approximation to the sum of VDW surface areas of acidic atoms C E
vsa base Approximation to the sum of VDW surface areas of basic atoms C E
vsa don Approximation to the sum of VDW surface areas of pure hydrogen bond donors C E
vsa hyd Approximation to the sum of VDW surface areas of hydrophobic atoms C I
Weight Molecular weight C I

C ⁄ I, (C) conventional or (I) inductive quantitative structure–activity relationship (QSAR) descriptors; I ⁄ E, (I) included or (E) excluded in the final Bac2a- # 2 model.
The conventional QSAR descriptors are all obtained from Molecular Operational Environment, 2004, by Chemical Computation Group Inc., Montreal, while the
inductive descriptors have been described by Cherkasov (13).
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where only the contact energy descriptors were used. However, in
the model using only the contact energy descriptors (Bac2a- #1), it
required six components to reach a R2Y level of 50%, while this
level was reached with only two components in the model using
the combined descriptor set (Bac2a- #2). The reason for one model
needing fewer components than another is that the data becomes
'stretched out' in one (or a few) dimension(s). Thus, the descriptors
used in Bac2a- #2 better described the variation between the
objects (peptides) than did the descriptors used in Bac2a- #1, indi-
cating that Bac2a- #2 may be the best model. Given these rather
conflicting results, both models were evaluated further, to assure
that the most accurate one was chosen.

Prediction of antibacterial peptides
To confirm the predictive capacity of the Bac2a- #1 and #2, we
randomly extracted 20 peptides from the Bac2a-library 10 times,
and built models on the remaining 208 peptides using both the

Bac2a- #1 and #2 optimized descriptor settings, resulting in 20
new models. The extraction of peptides was truly random, result-
ing in minimal overlap between the peptides extracted from each
model (7.5 € 2.5%). The Bac2a- #1-related models resulted in an
average of 14.1 significant components, utilizing 74.4% of X
(R2X = 0.744), modeling 86.1% of Y (R2Y = 0.861), with a cross-
validation of 81.2% (Q2 = 0.812). Conversely, all of the Bac2a- #2-
related models had 17 significant components, explaining an aver-
age of 78.2% of X (R2X = 0.782) and 81.2% of Y (R2Y = 0.812)
with a cross-validation of 65.6% (Q2 = 0.656). These models
where then used to predict the antibacterial activity of the ran-
domly excluded peptides, and these results were compared to
their measured antibacterial activities. Given the nature of the
assay measuring the peptide IC50 values, we allowed a twofold
deviation window in antibacterial activity when evaluating the
success of the predictive model. The results demonstrated that
the antibacterial activity were predicted correctly for an average
of 15.1 € 2.3 (76%) and 16.7 € 1.6 (84%) of the 20 peptides

Table 4: The first two columns give the position (row number) and the one-letter code sequence of the native peptide. Second and third
rows indicate column number and the amino acid substituted at each amino acid position

The matrix in the lower right corner (20 · 12) represents the 228 individual substitution peptides, and the values assigned to each peptide represent the pep-
tides IC50 activity. The peptides are color coded in respect to the antibacterial activity that they possess; black indicating active peptides (IC50 £0.1), light grey
are intermediate activity peptides (IC50 between 0.1 and 0.59) and white are classified as inactive peptides (IC50 ‡0.6) (6).

Table 5: The X-matrix in all the models contains the z-scale descriptors, while the content of the Y-matrix is pending on the different
models, implementing contact energy (CE) and ⁄ or inductive and conventional QSAR descriptors (QSAR) both prior to and after optimization
(opt.)

Model Y-matrix Comp. R2X R2Y Q2cum

Bac2a- #1 IC50 1 7.1 37.6 27.9
CE + IC50 16 78.4 83.7 78.9
CE (opt.) + IC50 14 74.1 86.5 81.7

Bac2a- #2 QSAR + IC50 12 61.1 61.3 18.3
QSAR (cross-correlated) + IC50 12 61.0 57.9 3.8
QSAR (cross-correlated & opt.) + IC50 7 38.1 74.0 55.1
CE (opt.) + QSAR (cross-correlated & opt.) + IC50 17 78.0 81.5 65.4

Comp. is the number of significant components; R2X and R2Y: the fraction of the sum of squares of all the X's and Y's explained by the current component,
respectively; Q2cum: the cumulative Q2 for the extracted components; QSAR, quantitative structure–activity relationship.
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excluded in each model related to the Bac2a- #1 and #2,
respectively. A t-test (and non-parametric test) with paired testing
of predictive results for all 10 submodels of Bac2a- #1 and #2
with a confidence interval of 99%, resulted in a two-tailed p-
value of 0.0084, confirming that the two models are statistically
significantly different. This suggests that the model built with all
the optimized and cross-correlated descriptors (Bac2a- #2) gives a
better and more accurate representation of the peptide struc-
ture ⁄ activity relationships, than the model only implementing the
contact energy descriptors (Bac2a- #1). In addition, a higher
spread in the peptide-predicted activities within the twofold win-
dow was observed when using the Bac2a- #1- compared to the
Bac2a- #2-related models (data not shown). Evaluation of incor-
rectly predicted peptides by use of Bac2a- #1 and Bac2a- #2 with
a paired t-test, demonstrated that both models have a statistically
even spread of peptides predicted with higher and lower
activity compared to the observed IC50 values, although the
numerical data may indicate that a higher percentage of the
peptides are predicted with lower activity than observed (data not
shown).

It can be anticipated, because of the nature of PLS modeling, that
peptides at either ends of the antibacterial activity range would be
predicted less accurately than the ones in the middle of the scale.
However, when examining the group of peptides that were not suc-
cessfully predicted, we found nine peptides with superior activity,
eight intermediately active and four inactive peptides, having IC50

values of <0.1, between 0.1 and 0.59, and ‡0.6, respectively. This
may indicate that the model could have a higher chance of predict-
ing false-positive (active peptides) than predicting false-negative
(inactive peptides).

The loading plot of the Bac2a- #2 model, demonstrated the relative
importance of the different variables in the model (Figure 1). Thus,
variables originated far from the origin were most important for the
modeling. The loading plot also revealed that there is a co-variance
between the peptide antibacterial activities and several different
biophysical parameters. Systematic evaluation of the loading plot
gave a ranking of preferred amino acids located in the different
positions throughout the peptide sequence. This type of evaluation
has been demonstrated quite successful in explaining why some
peptides are more active than others (8,9).

Peptide optimization
A brief evaluation of the loading plot confirms that the most
important amino acids are in positions 1, 4, 9, and 12, and they
should all preferably be arginine residues (Table 6). In positions
3 and 11, the residue introduced should optimally be a trypto-
phan, arginine, or tyrosine, with the latter being the least favor-
able amino acid. Another improvement would be provided by the
introduction of the same set of amino acids (W, R, or Y) at
positions 6, 7, and 10, while modifications at positions 2, 5, and
8 would be less favorable. According to this rationale, we can
explain the increase in activity from Bac2a to the multiple-substi-
tution peptide Sub2 (Table 6; 6), as well as the increase in
activity from the peptide Sub2, to Sub3 and Sub4, indicating that
contact energy descriptors may enable prediction of the activity
of structurally different peptides. These results also indicate that
the arginine substitution at position 2 in these peptides might
well limit their activity. Even further limitations are likely to be
introduced by changing this arginine to a tryptophan in the pep-
tide Sub6 (Table 6).

Figure 1: Loading plot for the
Bac2a- #2 model using: (A) the x-
variables including IC50, (B) using
only the y-variables.
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The optimal peptide sequence that is generated from the loading plot
(Figure 1, Table 6; R1LXR4I5XXI8R9XXR12, where X represents the spec-
trum of alternative amino acids), can also be compared with the anti-
bacterial activity results from the entire Bac2a library (Table 4). When
simplifying the activity results from the library and only looking at dif-
ferent activity groups (black, grey, and white color code), it was evi-
dent that, with minor exceptions, changes at amino acid position 1, 4,
5, 8, 9, and 12 resulted in no significant positive changes in peptide
antibacterial activity, thus confirming the results observed in the load-
ing plot. Surprisingly, substitutions at position 2, appeared quite often
to have a positive effect on antibacterial activity, and this was not
picked up in the loading plot. Similarly, changes in positions 6 and 10,
primarily led to minor changes in antibacterial activity, while the load-
ing plot identified these as important positions to do substitutions.
Changes in the remaining positions (3, 7, and 11) all gave several pep-
tide candidates with increased antibacterial activity, consistent with
results from the loading plot.

An additional finding during the modeling of Bac2a- #2 was the
very distinct subgrouping of peptides in the score plot (Figure 2). In
general, group 1 contained peptides with substitutions in sequence
positions 1, 4, 9, and 12, group 2 had primarily substitutions in
positions 3, 6, 7, 10, and 11, while group 3 had substitutions in
positions 2, 5, and 8. Though it is beyond the scope of this paper
to examine these subgroups in detail, this indicates that it might
be possible to separate the Bac2a library into subgroups, which

could be modeled better and more accurately than the entire
library. This could be interesting to specific studies dealing with
only optimization of certain parts of the peptide sequence.

Conclusions

We have demonstrated that contact energy descriptors can be used
to implement information regarding the peptide primary sequence
into PLS models, thus making it possible to distinguish closely
related peptides with rather different antibacterial activities. We
have also demonstrated that this model can be used to specifically
predict the antibacterial activity of large sets of peptides, unknown
prior to modeling. Comprising of Bac2a- #1 and - #2, demonstrated
that both contact energy descriptors and inductive and conventional
QSAR descriptors should be implemented in the model, to insure as
precise prediction as possible. Similar modeling can be very useful
in future high-throughput peptide design, reducing the number of
peptides synthesized in search for the optimally active candidates.
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