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ABSTRACT The structure and membrane interaction of the antimicrobial peptide aurein 2.2 (GLFDIVKKVVGALGSL-CONH2),
aurein 2.3 (GLFDIVKKVVGAIGSL-CONH2), both from Litoria aurea, and a carboxy C-terminal analog of aurein 2.3
(GLFDIVKKVVGAIGSL-COOH) were studied to determine which features of this class of peptides are key to activity. Circular
dichroism and solution-state NMR data indicate that all three peptides adopt an a-helical structure in the presence of trifluoro-
ethanol or lipids such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a 1:1 mixture of DMPC and 1,2-dimyristoyl-sn-
glycero-3-[phospho-rac-(1-glycerol)] (DMPG). Oriented circular dichroism was used to determine the orientation of the peptides in
lipid bilayers over a range of concentrations (peptide/lipid molar ratios (P/L)¼ 1:15–1:120) in DMPC and 1:1 DMPC/DMPG, in the
liquid crystalline state. The results demonstrate that in DMPC all three peptides are surface adsorbed over a range of low peptide
concentrations but insert into the bilayers at high peptide concentrations. This finding is corroborated by 31P-solid-state NMR data
of the three peptides in DMPC, which shows that at high peptide concentrations the peptides perturb the membrane. Oriented
circular dichroism data of the aurein peptides in 1:1 DMPC/DMPG, on the other hand, show that the peptides with amidated
C-termini readily insert into the membrane bilayers over the concentration range studied (P/L ¼ 1:15–1:120), whereas the aurein
2.3 peptide with a carboxy C-terminus inserts at a threshold concentration of P/L* between 1:80 and 1:120. Overall, the data
presented here suggest that all three peptides studied interact with phosphatidylcholinemembranes in amanner which is similar to
aurein 1.2 and citropin 1.1, as reported in the literature, with no correlation to the reported activity. On the other hand, both aurein
2.2 and aurein 2.3 behave similarly in phosphatidylcholine/phosphatidylglycerol (PC/PG)membranes, whereas aurein 2.3-COOH
inserts less readily. As this does not correlate with reported activities, minimal inhibitory concentrations of the three peptides
against Staphylococcus aureus (strain C622, ATCC 25923) and Staphylococcus epidermidis (strain C621—clinical isolate) were
determined. The correlation between structure, membrane interaction, and activity are discussed in light of these results.

INTRODUCTION

Cationic antimicrobial peptides are an important class of

peptides which target a wide range of microbes, such as bac-

teria and fungi, and disease-causing agents, such as cancer

cells and viruses (1,2). They are ubiquitous in the animal and

plant kingdoms and constitute an important part of the

immune defense system. To date, they have displayed little

or no resistance effects (3–5), making them prime targets for

development as a new class of antiinfective agents. The

thousand peptides identified to date share a common three-

dimensional arrangement in the presence of membranes, de-

spite the diversity in the amino acid sequences and structures

(e.g., b-sheets, a-helices, loops, and extended structures)

they adopt (1). They form amphiphilic molecules, where one

face of the peptide is hydrophobic and the other is positively

charged (3), thereby allowing them to interact and bind with

the negatively charged bacterial membranes. A model which

can be used to account for the initial interactions of most an-

timicrobial peptides with membranes is the Shai-Matsuzaki-

Huang model (6–10). Briefly, this model proposes that the

peptides are initially unstructured in solution and fold in the

presence of membranes or membrane mimetics. The peptides

then integrate into the outer half of the membrane, leading to

thinning of the outer leaflet (11–13). This is followed by

membrane disruption via a barrel-stave model, carpet model,

toroidal pore model, micellar aggregate channel model (14,15),

or detergent-like mechanism (16). Finally, the bacterial cells

are killed via, for example, membrane depolarization, deg-

radation of cell walls, and micellization, to name a few mech-

anisms (17).

An important family of cationic antimicrobial peptides is

those secreted by amphibians. When these animals are ex-

posed to a variety of stimuli, host-defense compounds, con-

sisting of amines, alkaloids, and peptides, are secreted (18).

A great many studies have been performed on peptides

obtained from amphibians and have been reviewed exten-

sively in the literature (for recent reviews, see Zasloff (2),

Pukala et al. (18), and Rinaldi (19)). Examples of a few am-

phibian host-defense peptides include magainins (9,20–28),

maculatins (29–34), and brevinins (35–40). Another example

is the family of aurein peptides from the Australian southern

bell frogs Litoria aurea and Litoria raniformis (18,32,33,41),
which is the focus of this contribution.
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Aurein peptides display a wide range of sequence diversity

and activity with respect to Gram-positive bacteria (Bacillus
cereus, Leuconostoc lactis, Listeria innocua, Micrococcus
luteus, Staphylococcus aureus, and Staphylococcus epider-
midis) and cancers (41). By far the most studied member of

this family is aurein 1.2 (30,31,33,42,43). It is a 13-residue

peptide with a net positive charge of 11. It possesses an

amidated C-terminus (CONH2 group) which increases the

positive charge of the peptide, which in turn is deemed

essential for its antibacterial action (18,32). It is most active

against L. lactis (with a minimal inhibitory concentration

(MIC) of 12 mg.mL�1), followed by S. aureus, S.
epidermidis, and Streptococcus uberis (with MICs of 50

mg.mL�1) (41,44). Solution-state NMR and circular dichro-

ism (CD) studies have shown that it adopts an a-helical
conformation in membrane mimetic environments: 70%

trifluoroethanol (TFE)/30% water (41) and sodium dodecyl

sulfate micelles (45). Since, the length of aurein 1.2 is too

short (;19.5 Å (29)) to span fluid lipid bilayers (;40 Å), it

is proposed that this peptide interacts primarily with the

membrane interface and promotes bilayer damage by a

detergent-like or carpet-like mechanism. Another wide-

spectrum antibiotic which behaves in exactly the same

manner is citropin 1.1, a 16-residue peptide with a net 12

charge (18,32,33).

In this contribution, we report data on two 16-residue

peptides from the aurein family: aurein 2.2 (net charge 12)

and aurein 2.3 (net charge12). Aurein 2.2 (Aur2.2-CONH2)

is active against a number of Gram-positive bacteria. For

example, it displays a MIC of 25 mg.mL�1 for S. aureus and
S. epidermidis (41), i.e., it is more active than aurein 1.2 in

this case and equally active to citropin 1.1. Aurein 2.3 (Aur2.3-

CONH2), on the other hand, is generally only marginally

active, with typical MICs of 100 mg.mL�1 (41). The dif-

ference in amino acid sequence between aurein 2.2 and 2.3 is

only a conservative mutation of a leucine to an isoleucine at

position 13. To assess how this mutation may be correlated

to activity, we have determined the structure of Aur2.2-

CONH2 and Aur2.3-CONH2 in TFE, in 1,2-dimyristoyl-sn-
glycero-3-phosphocholine (DMPC) small unilamellar vesicles

(SUVs), and in 1:1 DMPC/1,2-dimyristoyl-sn-glycero-3-
[phospho-rac-(1-glycerol)] (DMPG) SUVs, using CD. The

structures of the peptides in 25% TFE were also determined

using solution-state 1H-NMR. To further determine how

activity is modulated by sequence, we have also studied

a modified version of aurein 2.3 in which the amidated

C-terminus is replaced by a carboxyl group (Aur2.3-COOH).

In addition, we have determined the interaction of these three

peptides with model zwitterionic (DMPC) membranes, using

oriented CD and 31P-solid-state NMR, to determine how

they perturb the membrane bilayer. We have also determined

how these peptides interact with bacterial model membranes

consisting of a 1:1 mixture of DMPC/DMPG using oriented

circular dichroism (OCD). Finally, we have tested the anti-

biotic activity of the three peptides against S. Aureus (strain

C622, ATCC 25923) and S. epidermidis (strain C621—

clinical isolate). Overall, these data should enable us to corre-

late structure and membrane interaction of these three mar-

ginally different peptides with antibiotic activity and lead to

a better understanding of how sequence modulates function

in the aurein peptide family.

MATERIALS AND METHODS

Materials

Fmoc-protected amino acids, Wang and Rink resin, and 2-(1H-benzotriazol-1-

yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) were purchased

from Advanced Chem Tech (Louisville, KY). N-Hydroxybenzotiazhole
(HOBt) was obtained from Novabiochem (San Diego, CA). N,N-Dimethyl-

formamide (DMF), dichloromethane (DCM), acetonitrile (AcN), and po-

tassium nitrate were purchased from Fisher Chemicals (Nepean, Ontario,

Canada). N,N-Diiopropylethylamine (DIEA), trifluoroacetic acid (TFA),

ethane dithiol (EDT), and triethylsilane (TES) were obtained from Sigma-

Aldrich (St. Louis, MO). Mylar plates were made by cutting Melinex

Teijin films from Dupont (Wilton, UK). DMPC and DMPG were pur-

chased from Avanti Polar Lipids (Alabaster, AL) and obtained dissolved in

chloroform.

Methods

Peptide synthesis

Aurein 2.2 and aurein 2.3 (Aur2.3-CONH2) were synthesized using Rink

resin. Aur2.3-COOH was synthesized using Wang resin. In all cases, the

synthesis was started by first precoupling the first residue (Fmoc-Leu) to the

appropriate resin. Briefly, 0.30 mmol of the resin was presoaked for;1 h in

10 mL DMF. Then Fmoc-Leu was preactivated by dissolving in 0.5 M DMF

with 1 mmol HBTU, 1 mmol HOBT, and 2 mmol DIEA. The Fmoc-Leu was

then added to the resin. The mixture was spun overnight.

Next, the peptides were synthesized using an Applied Biosystems 431A

peptide synthesizer (Foster City, CA) by the in situ neutralization Fmoc

chemistry, using the preloaded Leu-Wang resin or Leu-Rink resin, as appro-

priate. Side chains were protected as follows: Asp(OtBu), Lys(Boc), and

Ser(tBu). For double coupling of serine, leucine, and isoleucine, one extra

step of coupling was performed for each amino acid with only DMF washes

in between. After chain assembly was completed, the peptide was deprotected

and cleaved simultaneously from the resin using a cleavage mixture of 81%

TFA, 5% ddH2O, 2.5% EDT, and 1% TES for 5 h. TFA was then removed

from the mixture by rotary evaporation. Chilled diethyl ether was used to

precipitate the crude product. Finally, the resulting peptide was dissolved in

water and lyophilized.

Purification

The crude peptide product was purified by preparative reverse-phase-high-

performance liquid chromatography on aWaters 600 system (Waters Limited,

Mississauga, Ontario, Canada) with 229-nm ultraviolet detection, using a

Phenomenex (Torrance, CA) C4 preparative column (20 mm, 2.1 3 25 cm)

at a flow rate of 20 mL/min and linear gradient of 0–50% buffer B (10%

ddH2O, 90% AcN containing 0.1% TFA) in buffer A (90% ddH2O, 10%

AcN containing 0.1% TFA) over 80 min. The identity of the products was

verified using spectrometry: Aur2.2-CONH2, purity $99%, molecular

weight (MW)¼ 1615.0 (from matrix-assisted laser desorption ionization-time

of flight (MALDI-TOF)); Aur2.3-CONH2, purity $99%, MW ¼ 1615.0

(from MALDI-TOF); Aur2.3-COOH, purity $98%, MW ¼ 1616.0 (from

MALDI-TOF).
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Solution CD sample preparation

Solution CD samples with a constant peptide concentration of 200 mMwere

prepared in different compositions of water and TFE: 100% water, 75%

water with 25% TFE, 50% water with 50% TFE, and 25% water with 75%

TFE. Different peptide/DMPC and peptide/DMPC/DMPG lipid molar ratios

of samples were also prepared: 1:15, 1:50, and 1:100. Appropriate amounts

of lipids in chloroform were vacuum dried in a 25-mL round bottom flask

overnight followed by addition of peptide in water. The mixture was soni-

cated in a water bath for at least 30 min (i.e., until the solution was no longer

turbid) to ensure lipid vesicle formation. For all samples, corresponding

background samples without peptides were prepared for spectral subtraction.

Solution NMR sample preparation

The peptides were dissolved in 65% water, 25% d3-TFE, and 10% D2O.

Each peptide sample had a final concentration of 2 mM, with a total volume

of 600 mL.

Mechanically oriented sample preparation

For solid-state NMR analysis, samples were prepared for four different

peptide/DMPC lipid molar ratios of 1:15, 1:30, 1:40, and 1:120. The amount

of DMPC (dissolved in chloroform) was kept constant at 19.18 mmol. The

lipid was dried using a stream of air to remove most of the chloroform. Then,

the appropriate amount of peptide was added and the mixture was re-

dissolved in 800 mL of methanol. The mixture was deposited in 5-mL por-

tions repeatedly onto nine Mylar plates, which were placed in a petri dish.

Between depositions, most of the methanol evaporated before the next

portion was deposited onto the plate. The plated samples were then covered

and left to dry overnight on the bench. The slides, on which the samples were

still slightly humid (;1 ml of water per slide), were stacked. Next, the

samples were placed in a 93% relative humidity chamber and were indirectly

hydrated by incubating inside the desiccator at 37�C for 4 days. The humid-

ity of the samples was verified by visual inspection. The degree of alignment

was verified by 31P-solid-state NMR. Consistent sample preparation was

verified by preparing 2–3 samples for each lipid composition and peptide

concentration. Finally, the plated samples were wrapped in a thin layer of

parafilm before data acquisition.

For oriented CD analysis, samples were prepared in a similar fashion as

described above. The peptide amount was kept constant at 0.5 mmol and

mixed with appropriate molar ratios of DMPC or DMPC/DMPG and

sonicated in 2 mL of methanol. Each mixture was deposited in 90-mL

portions with a syringe onto 3 3 1 cm and 1-mm-thick quartz slides, which

were cleaned thoroughly with ethanol. After indirect hydration of the

samples, clear layers of samples were obtained on the slides. Each sample

was covered with a second slide with a spacer in between. Spacers were

made by cutting six layers of stacked parafilm into a rectangular 3 3 1 cm

frame with 2-mm width. To hold the slides in place, a thin layer of parafilm

was wrapped around the edges of the slides.

Circular dichroism

CD experiments were carried out using a JASCO J-810 spectropolarimeter

(Victoria, British Columbia, Canada) at 30�C. The spectra were obtained

over a wavelength range of 185–250 nm. Continuous scanning mode with a

response of 1 s with 0.5-nm steps, bandwidth of 1.5 nm, and a scan speed of

20 nm/min were used. The signal/noise ratio was increased by acquiring

each spectrum over an average of three scans. Finally, each spectrum was

corrected by subtracting the background from the sample spectrum. Solution

CD samples were placed in a cell (0.1 cm in length) in 200-mL portions,

whereas oriented CD samples on quartz slides were directly placed in the

sample compartment. The temperature was kept constant by means of a

water bath.

NMR spectroscopy

Solution-state NMR data were acquired on a Bruker 500-MHz instrument

(Milton, Ontario, Canada), operating at a 1H frequency of 500.17 MHz. The

parameters for the experiments were chosen to match previously reported

parameters for aurein 1.2 (43) as much as possible. All spectra were col-

lected at 25�C. Spectra were acquired using total correlation spectroscopy

(TOCSY) and nuclear Overhauser enhancement spectroscopy (NOESY)

experiments in phase-sensitive mode using time proportional phase incremen-

tation (TPPI) (46) in the indirect dimension. The TOCSY experiment used

the MLEV17 sequence for mixing (mixing time ¼ 70 ms) and excitation

sculpting with gradients for water suppression (47). The two-dimensional

data set consisted of 4096 data points in t2 and 256 points in t1. The NOESY

experiment was acquired with a mixing time of 150 ms and also used

excitation sculpting for water suppression. The data size for this data set was

the same as for the TOCSY spectrum. Signals were averaged using 32 scans

for the TOCSY and 64 scans for the NOESY experiments, respectively. The

spectra were referenced to the residual methylene protons present in d3-TFE

(3.918 ppm). Spectra were processed to result in 1k 3 1k points.
31P-solid-state NMR experiments on mechanically aligned DMPC sam-

ples were carried out on the same Bruker 500-MHz NMR spectrometer, op-

erating at a phosphorus frequency of 202.48 MHz. 31P-NMR spectra were

obtained at 30�C with a single 31P-pulse/1H-decoupling sequence where the

decoupling was achieved using SPINAL-16 (48). The 90� pulse was set to
9.75 ms and a 3-s recycle delay was used. Each spectrum was acquired using

2048 scans, with no line broadening applied.

Minimal inhibitory concentration determination

MIC for Aur2.2-CONH2, Aur2.3-CONH2, and Aur2.3-COOH were deter-

mined based on the previously described modified methodology (49).

Briefly, 18-h cultures of S. aureus C622 (ATCC 25923) and S. epidermidis
C621 (clinical isolate generously donated by D. Speert) grown in Mueller

Hinton (MH) medium (Difco, Oakville, Ontario, Canada) were diluted to

;2 3 105 colony forming units per mL. Then 90 mL of diluted culture was

dispensed into a 96-well polystyrene microtitre plate (Costar, Cambridge,

MA). Separately, twofold serial dilutions in sterile MH broth of the

respective peptide were carried out at 103 final concentration before 10 mL

of each dilution was transferred to the culture and grown for 18 h at 37�C
before being read. The MIC was recorded as the lowest concentration of

peptide in which no visible growth could be observed. Controls included the

peptide antibiotic polymyxin B (Sigma, St. Louis, MO). In addition, culture-

only and broth-only wells were used.

RESULTS

Structure determination of aurein peptides by CD
and solution-state NMR

To determine which structure the Aur2.2-CONH2, Aur2.3-

CONH2, and Aur2.3-COOH peptides adopt in water and in

the presence of model membranes, solution CD experiments

were performed. Fig. 1 shows that all three peptides adopt a

random coil conformation in aqueous solution (Fig. 1, a–c,
solid black line). Upon addition of TFE, all three peptides

change conformation. Spectra consisting of a peak at 190 nm

and two minima at 210 nm and 222 nm, which are char-

acteristic of a-helical structure, are observed for all TFE

concentrations (25%, 50%, and 75%) and all peptides. As

TFE has been shown to promote the formation of a-helices
(for a recent example, see Perham et al. (50)), CD spectra

of the Aur2.2-CONH2, Aur2.3-CONH2, and Aur2.3-COOH

2856 Pan et al.
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peptides were also determined in DMPC and DMPC/DMPG

(1:1) SUVs to determine the true conformation in a mem-

brane environment. The spectra, illustrated in Figs. 2, a–c,
and 3, a–c, respectively, demonstrate that the aurein peptides

also adopt an a-helical conformation in this case. Similar

intensities were observed for all the peptide/lipid molar ratios

(P/L ¼ 1:15, 1:50, and 1:100) studied here. This indicates

that maximum binding of the peptide to the vesicles oc-

curred. Evidence for saturation would manifest itself in a

change in the CD signal, due to the contribution to the signal

from an increased proportion of random coil structure (33).

To determine whether the peptides adopt a continuous

a-helical structure or whether the peptides are bent, 1H-solution-

state NMR experiments were performed. As no changes in

the CD spectra were observed in the TFE concentration range

used here, the solution-state NMR spectra were collected

using 25% d3-TFE. The 1H-NMR spectra for the three

peptides were assigned using the TOCSY and NOESY data

sets, using TOPSPIN. Of all three peptides, the spectra for

Aur2.3-CONH2 were the least overlapped. The assignments

(not shown) did not vary significantly from peptide to peptide,

giving us a first indication that the peptides all adopt similar

structures. In the HN-HN region (not shown) and in the fin-

gerprint region (Fig. 4, a–c), a large number of sequential (i to
i 1 1) connectivities were observed. At a low contour level,

additional i to i 1 2 connectivities were observed in the

FIGURE 1 Solution CD spectra of the aurein peptides in water/TFE

mixtures: (a) Aur2.2-CONH2, (b) Aur2.3-CONH2, and (c) Aur2.3-COOH
(solid black line, 100% H2O; black dotted line, 75% H2O/25% TFE; solid

gray line, 50% H2O/50% TFE; gray dotted line, 25% H2O/75% TFE). The

spectra indicate that, in all cases, the peptides are unstructured in water but

adopt an a-helical conformation upon addition of TFE.

FIGURE 2 Solution CD spectra of the aurein peptides in DMPC SUVs:

(a) Aur2.2-CONH2, (b) Aur2.3-CONH2, and (c) Aur2.3-COOH (solid black

line, P/L ¼ 1:15; dotted line, P/L ¼ 1:50; solid gray line, P/L ¼ 1:100). The

spectra indicate that the peptides adopt an a-helical conformation in the

presence of DMPC SUVs.
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HN-HN region, as summarized in Fig. 5 b for Aur2.3-CONH2.

Other nuclear Overhauser enhancement (NOE) connectivities

observed include daN(i,i1 4), daN(i,i1 3), and dab(i,i1 3),

as summarized in Fig. 5 b. These data as well as the observed
chemical shift differences of the measured Ha chemical

shifts with respect to random coil values (51) (Fig. 5 a)
suggest that all three peptides adopt a continuous a-helical
structure. Full structure calculations (not performed at this

time) could be used to further confirm these results.

Membrane interaction of aurein peptides by
oriented CD and 31P-solid-state NMR

To determine how the Aur2.2-CONH2, Aur2.3-CONH2, and

Aur2.3-COOH peptides interact with membrane bilayers,

OCD and 31P-solid-state NMR experiments were carried out.

For both methods, samples were prepared in almost identical

fashion so that the data sets could be compared directly and

also to verify that the samples were aligned. All experiments

were conducted at 30�C, i.e., in the liquid crystalline phase

for DMPC/DMPG. In addition, experiments were repeated

at least twice, using at least two different samples (for each

concentration), to ensure reproducibility of the results. The

OCD results for the Aur2.2-CONH2, Aur2.3-CONH2, and

Aur2.3-COOH peptides in DMPC and DMPC/DMPG (1:1)

bilayers are shown in Fig. 6. The spectra were scaled so that

the minimum at 222 nm has the same intensity. The data

illustrate that at a peptide/lipid (P/L) molar ratio of 1:15, all

peptides are no longer completely in the surface-adsorbed

or S state (52,53) in DMPC (Fig. 6, a–c). In fact, at this P/L

ratio, the peptides can be seen as either i), being in the

inserted or I state with a tilt angle (33,54)—also known as the

tilted or T-state (55); or ii), being 50% oriented transmem-

brane and 50% surface adsorbed (53). As the peptide is too

short to span the membrane bilayer entirely, since its hydro-

phobic length is ;24 Å and the DMPC bilayer hydrophobic

thickness is 26.5 Å (12,56) in the liquid crystalline phase, it

is quite likely that the peptide is inserted at an angle at P/L¼
1:15. The critical threshold peptide concentration (P/L*) is

between 1:15 and 1:30 for the amidated peptides, whereas it

is between 1:30 and 1:40 for Aur2.3-COOH. These threshold

concentrations are similar to those observed for aurein 1.2

and citropin 1.1 (33), where a change is observed to occur

between P/L molar ratios of 1:50 and 1:15. Interestingly, the

Aur2.3-COOH peptide, which is presumably the least active

of the three peptides, appears to insert into phosphatidyl-

choline (PC) bilayers slightly more readily than its amidated

C-terminus counterpart. In DMPC/DMPG bilayers (Fig. 6,

d–f ), the amidated peptides insert at all concentration ranges

shown, i.e., for P/L ratios of 1:120–1:15. Indeed, even at

very low peptide concentrations (P/L ; 1:200), Aur2.2-

CONH2 and Aur2.3-CONH2 remain in the I-state (data not

shown). For the Aur2.3-COOH peptide, on the other hand,

the threshold P/L* concentration is between 1:80 and 1:120,

indicating that comparatively high peptide concentrations are

needed for insertion to take place. This is most likely due to

the unfavorable electrostatic interactions between the neg-

atively charged C-terminus and the negatively charged PG

headgroups (57).
31P-NMR spectra (shown in Fig. 7) were recorded for all

peptides in DMPC. The spectra, acquired with the membrane

normal parallel to the magnetic field, illustrate that for the

most part, the lipids remain aligned with increasing peptide

concentration. The peptides appear to disorder the headgroups

somewhat, as evidenced by the scaling of the 31P-chemical-

shielding anisotropy. In addition, the peptides affect the

dynamics of the lipid headgroups, as shown by a decrease in

T2, leading to line broadening. Both these effects have also

been previously observed for aurein 1.2 and citropin 1.1

(31). In addition, a small proportion of the lipid headgroups

FIGURE 3 Solution CD spectra of the aurein peptides in DMPC/DMPG

(1:1) SUVs: (a) Aur2.2-CONH2, (b) Aur2.3-CONH2, and (c) Aur2.3-COOH
(solid black line, P/L ¼ 1:15; dotted line, P/L ¼ 1:50; solid gray line, P/L ¼
1:100). The spectra indicate that the peptides adopt an a-helical conforma-

tion in the presence of DMPC/DMPG SUVs.
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are significantly perturbed, as seen by the appearance of an

additional 31P-NMR resonance (at 12 ppm) with increasing

peptide concentration. The presence of a peak near the

isotropic position has previously been observed in 31P-NMR

spectra of aurein 1.2 and has been attributed to membrane

disruption (31). Generally, the presence of a peak at or near

the isotropic position has been observed in solid-state NMR

studies of other antimicrobial peptides (26,58–60) and has

been attributed to the formation of small lipid vesicles/

micelles, the formation of a different lipid phase (26), or

toroidal pore defects within the bilayer (59,61). To clearly

identify which of these mechanisms is relevant here, addi-

tional data from experiments such as differential scanning

calorimetry (to determine changes in phase) or 15N-NMR (to

determine the orientation of the peptide in the bilayer) would

be needed. As the aim of this study was to determine whether

the aurein peptides studied here behave differently to aurein

1.2 and citropin 1.1 (which promote bilayer damage via a de-

tergent-like mechanism (16), resulting in turn in membrane

leakage (30)) and to determine whether this can be correlated

to activity, the exact nature of the manner in which Aur2.2-

CONH2, Aur2.3-CONH2, and Aur2.3-COOH perturb DMPC

membranes will not be characterized further at this point in

time. The 31P-NMR data suggest in corroboration with the

OCD results that the interaction of these three peptides with

DMPC bilayers is identical.

Antibiotic activity of the aurein peptides

Given that all three peptides studied here adopt a-helical
structure regardless of membrane environment (DMPC

versus DMPC/DMPG) and given that the peptides interact

with the membranes in a manner which cannot be directly

correlated to activity, MICs of all three peptides against two

Gram-positive bacteria (S. aureus and S. epidermidis) were
determined. The MICs, reported in Table 1, indicate that the

amidated peptides have very similar activities under condi-

tions used here, contrary to what is reported in the literature

FIGURE 4 Fingerprint region of solution NMR NOESY spectra of (a) Aur2.2-CONH2, (b) Aur2.3-CONH2, and (c) Aur2.3-COOH. The spectra were

acquired using a phase-sensitive NOESY experiment, with excitation sculpting with gradients for water suppression (see text). All spectra were acquired at

25�C, using 64 scans and a mixing time of 150 ms. The spectra were referenced to the residual methylene protons present in d3-TFE (3.918 ppm). In b, arrows

indicate some of the connectivities use to perform the sequential assignment. In ambiguous cases, the HN-HN region was also used to confirm i to i 1 1

connectivities.
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(41). Aur2.2-CONH2 and Aur2.3-CONH2 have similar

MICs of 15 mg.mL�1 and 25 mg.mL�1, respectively, against

the wild-type S. aureus strain C622. Likewise, these two

peptides have identical MICs of 8 mg.mL�1 against S.
epidermidis strain C621. The COOH version of aurein 2.3,

on the other hand, is not active with MICs of.100 mg.mL�1

for both types of bacteria. Peptides with charged C-termini

have been found to be inactive or much less active (18,41)

than their amidated counterparts. Wells containing poly-

myxin B, culture only, and broth only were used as controls.

The MICs observed for polymyxin B are reported in Table

1 and agree with literature findings (62).

DISCUSSION

Determining the structure of antimicrobial peptides and

characterizing their interaction with lipid bilayers is essential

to understanding how they function and kill bacteria. By

elucidating the mode of action of antibiotics, it is possible to,

on the one hand, better understand how microbes develop

resistance (5), and on the other, develop modified versions of

these agents to mitigate this development. An approach

which has received much attention recently is to search for

naturally occurring antibiotic molecules derived from the

plant and animal kingdoms (1,3,15,16,63), which have net

positive charge and typically adopt amphiphilic structures to

maximize their interactions with bacterial membranes.

To elucidate the mode of action of a cationic antimicrobial

peptide, one typically picks a highly active peptide and deter-

mines i), its structure by CD and/or NMR in a membrane or

membrane mimetic environment, and ii), its interaction with

model membrane bilayers such as 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) (e.g., MSI-78 and MSI-

594 (64)), DPhPC (e.g., alamethicin (61,65)), DMPC (e.g.,

aurein 1.2 (33)), and other diacylphosphatidylcholine mem-

branes (e.g., K2(LA)xK2 (66)), i.e., lipids which are good

models for probing the hemolytic activity of the peptides, or

lipid mixtures, such as POPC/PG (e.g., MSI-78 and MSI-594

(64)) and DMPC/DMPG (e.g., PGLa (55)), i.e., bacterial

model membranes. To completely describe the peptide-lipid

interactions, one needs to take into account a range of param-

eters such as peptide/lipid ratio, membrane composition,

FIGURE 5 NMR-derived evidence

indicating that the aurein peptides are

a-helical: (a) Ha chemical shift differ-

ences for Aur2.2-CONH2 (hashed),
Aur2.3-CONH2 (solid black), and

Aur2.3-COOH (open); (b) typical

NOE connectivities observed for these

peptides—shown here for Aur2.3-

CONH2 only. Solid black bars repre-

sent unambiguous NOEs, and gray bars

represent connectivities which are pre-

sent but are ambiguous due to overlap.
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temperature, hydration, buffer composition (16), and lipid

phase (61). Once this is taken into consideration, one typi-

cally generates a model by which the peptide inserts into the

lipid bilayer: via the carpet mechanism (6), barrel-stave (10)

or toroidal (67) pore formation, or simply a detergent-like

mechanism (16,23), as previously mentioned.

Here we have taken a slightly different approach in that we

have studied three peptides which have essentially the same

amino acid sequence but have very different reported ac-

tivities (41) with respect to different microbes. Aurein 2.2

(GLFDIVKKVVGALGSL-CONH2) is reported to be the

most active of the three peptides investigated. It shares its

first 9 residues in common with citropin 1.1 (though 2 resi-

dues have slightly different order), which is also 16 amino

acid residues in length. Presumably this sequence similarity

may explain why Aur2.2-CONH2 and citropin 1.1 display

similar activities against L. lactis, S. aureus, and S. epidermidis
(43). Aurein 2.3, on the other hand, with a single point mu-

tation L-13/I-13, is only marginally active (41). We also

investigated a modified version of aurein 2.3, with a carboxy

C-terminus. Since most active members of the aurein peptide

family have an amidated C-terminus, with only one aurein

(aurein 5.2) with a �COOH terminus being active, and then

only marginally so (43), it is expected that Aur2.3-COOH

will at best be only marginally active.

The data presented here show that despite the difference in

sequence and in reported activity, all three peptides adopt

continuous a-helical structures. The results from solution

FIGURE 6 Oriented CD spectra for

(a) Aur2.2-CONH2, (b) Aur2.3-CONH2,

and (c) Aur2.3-COOH in DMPC and (a)

Aur2.2-CONH2, (b) Aur2.3-CONH2,

and (c) Aur2.3-COOH in DMPC/

DMPG (1:1). P/L molar ratios ¼ 1:15

(blue), 1:30 (green), 1:40 (red), 1:80

(black), and 1:120 (gray). The spectra

were normalized such that the intensities

of all spectra at 222 nm are the same. The

spectra show that the peptides insert into

the DMPC bilayer at threshold P/L*

molar ratios between 1:15 and 1:30 for

Aur2.2-CONH2 and Aur2.3-CONH2,

and 1:30 and 1:40 for Aur2.3-COOH.

In DMPC/DMPG (1:1), the amidated

peptides are inserted over the entire

concentration range, whereas the P/L*

is between 1:120 and 1:80 for Aur2.3-

COOH under these conditions.
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CD and NMR are, in fact, analogous to those reported in the

literature for aurein 1.2 and citropin 1.1 (33,43). In all cases,

these antimicrobial peptides are unstructured in solution and

then fold in the presence of membranes or membrane mi-

metics. In other words, all peptides follow the first step of the

Shai-Matsuzaki-Huang model (6–10) regardless of whether

the peptides are in TFE, DMPC SUVs, or DMPC/DPMG

(1:1) SUVs. Once folded, the aurein peptides studied here

then interact with PC membranes by predominantly associ-

ating with the surface. At high concentrations, the peptides

realign from a surface-bound S-state to a tilted T-state (i.e.,

insert at a tilt angle). The exact value of this tilt angle has yet

to be determined (e.g., by labeling one residue with 15N

(31,33)) but is expected to be similar to that of citropin 1.1

(33), given the same length of the peptides. The transition

from the S to the T state occurs at P/L* between 1:15 and

1:30 for the amidated peptides and between 1:30 and 1:40 for

Aur2.3-COOH. The slightly more favorable insertion of

Aur2.3-COOH into PC membranes is most likely due to elec-

trostatic interactions (57). Repulsive interactions between

C-termini which are in proximity when the peptide is surface

associated are presumably minimized when the peptides

insert. The 31P-NMR spectra of aligned peptides in DMPC

show that at high peptide concentrations, a proportion of the

lipid headgroups are perturbed. This is again similar to what

was observed for aurein 1.2 and citropin 1.1 (31). The similar

OCD and NMR spectra observed for all peptides suggest that

the interaction of the aurein peptides with PC membranes

does not depend on sequence or the nature of the C-terminus.

The interactions of the aurein peptides with bacterial model

membranes consisting of DMPC/DMPG (1:1), on the other

hand, show that the nature of the C-terminus modulates

peptide insertion. Aur2.2-CONH2 and Aur2.3-CONH2 dis-

play similar behavior and insert readily into PC/PG mem-

branes, even at low peptide concentrations (i.e., P/L* ,
1:200). The Aur2.3-COOH peptide inserts into PC/PG

membranes at P/L* between 1:120 and 1:80. In other words,

it inserts more readily into PC/PG membranes than in PC

alone but does not insert as easily as the amidated peptides

do. Clearly, the charge interactions between the positively

charged Lys side chains and the negatively charged lipid

headgroups drive all the aurein peptides to interact with and

insert more readily in PC/PG bilayers. The charge repulsions

between the COOH terminus and the PG headgroups result

in higher Aur2.3-COOH peptide concentration needed for

the T state to be achieved.

Overall, the structural and membrane interaction data

indicate that the single point mutation L-13/I-13 in going

from Aur2.2-CONH2 to Aur2.3-CONH2 does not affect how

these peptides fold and interact with DMPC and DMPC/

DMPG membranes. This is consistent with the new activity

measurements reported here, which show that these two

peptides have similar bactericidal properties. This indicates

that small changes in the overall hydrophobicity of a peptide

(i.e., leucine and isoleucine have slightly different hydro-

phobicity scales (68)) are not likely to have an effect on the

activity of a cationic antimicrobial peptide. In addition, the

data indicate that the nature of the C-terminus, specifically its

charge, does not affect the structure a cationic antimicrobial

FIGURE 7 31P-solid-state NMR spectra of all three aurein peptides

oriented in DMPC bilayers. The spectra were recorded using 2048 scans at

30�C, oriented such that the membrane normal was parallel to the external

magnetic field. The spectra were processed without any line broadening (see

text for further experimental details).

TABLE 1 MICs in mg.mL�1 of Aur2.2-CONH2, Aur2.3-CONH2,

Aur2.3-COOH, and polymyxin B (control) toward S. aureus and

S. epidermidis (see text for experimental details)

Peptide

S. aureus

strain C622

S. aureus

(41)

S. epidermidis

strain C621

S. epidermidis

(41)

Aur2.2-CONH2 15 25 8 25

Aur2.3-CONH2 25 100 8 100

Aur2.3-COOH $100 – .128 –

Polymyxin B 50 – 55 –

MICs are given as the most frequently observed value obtained from repeat

experiments.
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peptide adopts in the presence of membrane but rather its

interaction with charged lipid headgroups. The MICs ob-

tained for the Aur2.3-COOH peptide clearly show that a

charged C-terminus can destroy the antibiotic activity.

In conclusion, we have demonstrated that to elucidate the

mode of action of a family of cationic antimicrobial peptides,

it may be useful to compare peptides with similar sequences

but different activities to determine whether structure and/or

membrane interactions are important for activity. We have

also shown that it is important to study these peptides in

bacterial model membranes (DMPC/DMPG) and not DMPC

alone, as electrostatic interactions are an important driving

force for peptide-lipid interactions. Finally, now that we have

determined under which conditions the Aur2.2-CONH2 and

Aur2.3-CONH2 peptides perturb lipid bilayers and how that

is correlated with activity, we will determine the exact

mechanism by which these peptides bring about membrane

disruption. We will verify whether the detergent-like mech-

anism proposed for aurein 1.2 and citropin 1.1 based on data

obtained in DMPC (31,33) is also relevant for the aurein 2.2

and 2.3 peptides studied here.

The CD/OCD measurements were performed at the University of British

Columbia Centre for Biological Calorimetry (CBC).
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