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Intrinsic antibiotic resistance of Pieudomonas
aeruginosa

Pseudomonas aeruginosa, an opportunistic
pathogen, is one of the major causes of life-
threatening bacterial infections in western
society. It is particularly troublesome in those
patients who are already debilitated by severe
burns, cancer, cystic fibrosis, leukaemia, dia-
betes mellitus, or major surgery including
transplantation. Owing to the high intrinsic
resistance of P. aeruginosa to almost all com-
monly used antibiotics, infections caused by this
pathogen, once established, are often fatal
(Flick & Cluff, 1976). In contrast to many other
bacteria, plasmid-mediated antibiotic resistance
is relatively uncommon (Bryan, 1979). This led a
number of researchers (Nordstrom and Sykes,
1974; Brown, 1975; Bryan, 1979) to propose
that the cell wall of P. aeruginosa might be a
barrier to antibiotic diffusion although, until
recently, direct evidence to support this
conclusion was lacking.

It is now well established that the predomi-
nant reason for this high intrinsic resistance to
hydrophilic antibiotics, such as /Mactams, is the
low rate of permeation of these antibiotics
across the outer membrane (Angus et al., 1982;
Yoshimura & Nikaido, 1982; Nicas & Hancock,
1983). The rate of permeation of /Mactam
compounds across the outer membrane of P.
aeruginosa is 12-100 fold lower than the rate
of permeation of the same compounds across
the outer membranes of Escherichia coll. The
relationship between low outer membrane per-
meability and antibiotic resistance was con-
firmed by examination of a mutant strain of
P. aeruginosa (Z61) which is highly susceptible
to all 27 antibiotics studied (Zimmerman, 1979;
Angus et al. 1982). The mutant has a six fold
increase in outer membrane permeability to the
chromogenic ^-lactam nitrocefin, compared
with its present strain K799 which has normal
antibiotic resistance (Angus et al., 1982).

In other Gram-negative bacteria, it has been
demonstrated that 'porin' proteins, which form
water-filled channels across the outer mem-
brane, are responsible for the uptake, into the
cell periplasm, of hydrophilic antibiotics, such
as 0-lactams (Nikaido & Vaara, 1985). A

mutant strain of P. aeruginosa lacking a major
outer membrane protein, designated protein F,
was shown to have a seven fold decrease in
outer membrane permeability compared to its
parent strain (Nicas & Hancock, 1983). This
suggests that protein F is the major protein
responsible for the (albeit poor) outer mem-
brane permeation pathway of P. aeruginosa. In
addition, purified protein F has been demon-
strated to form water-filled channels in model
membranes by three different methods
(Hancock, Decad & Nikaido, 1979; Bcnz &
Hancock, 1981; Yoshimura et al, 1983).

There has been some controversy recently
over the actual size of the water-filled channels
across the outer membrane of P. aeruginosa.
Our original data (Hancock & Nikaido, 1978;
Hancock et al., 1979), based on the liposome
exclusion assay, suggested that protein F and
protein F-containing outer membrane frag-
ments formed very large water-filled channels
with an exclusion limit for saccharides of
approximately 3000 daltons compared to the
600 dalton exclusion limit of Esch. coli pore-
forming (porin) proteins. This paradox was
resolved when data were presented (Benz &
Hancock, 1981; Yoshimura et al. 1983) indicat-
ing that only a small percentage, perhaps as few
as 0-4% of the approximately 200 000 protein F
molecules per cell (Nicas & Hancock, 1983),
formed these large channels. Therefore, while
the P. aeruginosa outer membrane has a large
exclusion limit due to- these large channels,
the small total area of channels available for
diffusion of compounds as large as antibiotics
results in low outer membrane permeability.
Interestingly, we have recently obtained evi-
dence suggesting that the other 99-6% or so of
protein F channels are small and should be
almost impenetrable by fi-hctams (Woodruff et
al. 1986), in contrast to our previous proposal
that these other channels were closed (Nicas &
Hancock, 1983).

Further evidence for the proposed large
exclusion limit was provided by Miller & Becker
(1978), who demonstrated that P. aeruginosa
grew as well on pentamethionine as it did on the
free amino acid methionine, whereas an Esch.
co/imelhionine auxotroph grew well on trimeth-
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ionine and methionine-containing tetrapeptides
but did not grow on pentamethionine (Becker &
Naider, 1974). Furthermore, large side chains
attached to ^-lactams often reduce the activity
of these /Mactams against enteric organisms,
such as Esch. coli, but not against P. aeruginosa.
Two recent papers have disputed the concept of
an overall large exclusion limit due to a small
number of large pores (Caulcott, Brown &
Gouda, 1984; Yoneyama, Akatsuka & Nakal,
1986). However, I believe that these papers have
flaws in experimental design which detract from
the conclusions made in them. For example, the
paper of Caulcott et al. (1984) utilizes a series of
centrifugation procedures on cells loaded with
radiolabelled saccharides of different sizes. The
results are analysed by examining the relative
rates of leakage of these saccharides over a long
period. The leakage of saccharides is expressed
relative to that of sucrose. The conclusion that
the P. aeruginosa exclusion limit is small is based
on the assumption that larger substrates which
can permeate across the outer membrane should
permeate at the same rate as sucrose, an assump-
tion that is clearly incorrect given the theoretical
considerations of Rcnkin (1954), who demon-
strated that friction of a trisaccharide passing
through a pore of limited dimensions must be
very much greater than friction on a disaccharide
passing through the same channel. In addition,
outer membrane permeability measurements
cannot be made on cells that have been washed
after loading with radiolabelled compounds,
since the time required for half equilibration of
solutes across the outer membrane is in the
order of a few seconds. To estimate the exclusion
limit, the paper ofYoneyama et al. (1986) utilizes
plasmolysis experiments, based on the ability of
large concentrations of saccharides to pass
across the outer but not the inner membrane,
causing water to leave the cytoplasm and conse-
quent collapse of the inner membrane. However
both plasmolysis and outer membrane collapse
reflect the relative rate of trans-outer membrane
permeability to the sugar in question compared
with the rate of water movement across the
cytoplasmic membrane. Thus, for P. aeruginosa
these experiments can be interpreted by propos-
ing that the rate of penetration, even of sucrose,
across the outer membrane is too slow to pre-
vent the collapse of the outer membrane due to
water leakage across the cytoplasmic and, sub-
sequently, the outer membrane. It should be
noted that the above papers differ in their esti-
mates of the size of sugar that can permeate the
P. aeruginosa outer membrane: disaccharides
in the case of Caulcott et al. (1984) and mono-
saccharides in the case ofYoneyama et al. 1986.

One important consideration is whether low
outer membrane permeability alone is sufficient
to account for the level of resistance to all anti-
biotics observed in P. aeruginosa. Despite the
low rate of diffusion across the P. aeruginosa
outer membrane one can calculate that the fi-
lactam nitrocefin, at an external concentration
of 5 mg/1 (given the measured outer membrane
permeability coefficient C of 1-3 x KT'min"1

mg cells"1 ml) would equilibrate across the
outer membrane in 21 sec. Thus low outer mem-
brane permeability will slow down the rate of
uptake into the periplasm (to 116 molecules of/?-
lactam taken up/cell/sec in the above example)
but will not prevent uptake. A secondary defence
mechanism such as the presence of a /Mactamase
is required to prevent the build-up of /J-lactams
in the periplasm to the same concentration as
that in the external medium. This is emphasized
by the demonstration of Vu & Nikaido (1985)
that strains of /Mactamase-dereprcssed Entero-
bacter cloacae are resistant to third generation
cephalosporins as a result of low outer mem-
brane permeability combined with very slow
hydrolysis in the periplasm. These obser-
vations have been recently confirmed for fi-
lactamase derepressed isolates of P. aeruginosa
(Livermore, 1985; Bayer, A. S., Parr, T. R. Jr.,
Chan, L. and Hancock, R. E. W. unpublished,
observations). Therefore it appears there are at
least two readily demonstrable factors which
interact to give rise to resistance to /Mactams in
P. aeruginosa low outer membrane permeability
and hydrolysis of incoming /Mactams by peri-
plasmk /Mactamase.

Many non-/7-lactam antibiotics probably also
utilize the porin pathway of P. aeruginosa.
However, polycationic antibiotics, such as
aminoglycosides and polymyxins, traverse the
outer membrane by a different route (Hancock,
1984). These antibiotics interact with the outer
membrane at sites where divalent cations form
cross-bridges between adjacent lipopolysac-
charide molecules (Peterson, Hancock &
McGroarty, 1985; Moore, Bates & Hancock,
1986). The consequent displacement of these
divalent cations by the bulkier polycationic anti-
biotics (Moore etal.,\ 986) results in an increase
in outer membrane permeability (Hancock,
Raffle & Ntcas, 1981; Loh, Grant & Hancock,
1984) which has been proposed to result in
increased uptake of the polycationic antibiotic
itself (Hancock, 1984). Since these polycations
are promoting their own uptake across the outer
membrane we have called this phenomenon
'self-promoted' uptake. The presence of this
alternative pathway for aminoglycosides may
explain the relative efficacy of such compounds
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against P. aeruginosa. Furthermore, since it has
been demonstrated, that aminoglycosides will
disrupt the outer membrane thereby increasing
its permeability towards the /Mactam nitrocefin
(Hancock et al., 1981), this presents a plausible
explanation of the known synergy between
/J-lactams and aminoglycosides against P.
aeruginosa (Sykes & Morris, 1975).

Since low outer membrane permeability
presents a considerable problem in the therapy
of P. aeruginosa infections aqd since activation
of the 'self promoted' uptake pathway results in
an increase in outer membrane permeability
(Hancock et al., 1981; Loh et al., 1984), a new
approach to P. aeruginosa therapy can be pro-
posed. Presentation of an activator of the self-
promoted pathway together with an antibiotic
may result in increased efficacy of this antibiotic
against P. aeruginosa infections. With this in
mind, we (Hancock & Wong, 1984) instituted a
screening systems for such activator compounds
which we have termed 'permeabil-
izers*. These compounds fall into four basic
classes: polycations, divalent cation chelators,
monovalent organic cations and, possibly,
reducing agents. A number of these compounds
including polymyxin B (Sykes & Morris, 1975),
polymyxin B nonapeptide (Vaara & Vaara,
1983), aminoglycosides (Sykes & Morris, 1975),
ascorbate (Rawal, McKay & Blackball, 1974)
and EDTA (Wilson, 1970) have demonstrated
effective synergy with antibiotics.

While these studies have become quite
sophisticated, I feel that they have only touched
upon the problems involved in treating P.
aeruginosa infections. The considerable difficul-
ties that remain include the development of
unstable resistance to antibiotics (adaptation to
resistance that reverts upon antibiotic removal)
(e.g. Gerber & Craig, 1982), the common iso-
lation of low level antibiotic-resistant mutants
with subtle surface and permeability alterations
(Bryan, O'Hara & Wong, 1984; Godfrey,
Hatledid & Bryan, 1984; Godfrey, 1984) and the
poor relationship between laboratory-derived
MICs and therapeutic efficacy (Davis, 1974;
Flick &Cluff, 1976).

R. E. W. HANCOCK
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The prevention of wound infection after coronary
artery bypass surgery

Sternal wound infection, one of the many
possible complications of open heart surgery,
has a sinister reputation and may progress to
rnediastinitis, osteomyelitis and bacteraemia; it
has a high mortality (7-45%) and the survivors
often require extensive wound debridement
(Sarr, Gott & Townsend, 1984). Risk factors for
sternal sepsis have recently been reviewed by
Sarr c/o/. (1984).

Although both coronary artery bypass graft
(CABG) and valve replacement operations are
conventionally "clean" and require cardio-
pulmonary bypass (CPB), in CABG no intra-
vascular prosthesis is involved but instead
saphenous veins are harvested from the upper
thigh. Two recent reports emphasized the
differences between the two operations and
related them to post-operative infection (Wells,
Newsom & Rowlands, 1983; Farrington et al.,
1985a). Both found sternal wound sepsis to be
common after CABG (about 8%) and to be
caused by Staphylococcus aureus or endogenous,
antibiotic-sensitive coliforms; coliforms were
also often isolated from leg incision infections.
Sternal infection after valve replacement was
less common (about 2%) and predominantly
staphylococcal. Available evidence suggests
peri-operative implantation of pathogens; Kluge
et al. (1974) found extensive contamination of
chest wounds in theatre with skin commensals,
but coliforms and S. aureus were occasionally
also isolated. During CPB the patient may be
exposed to wound contaminants via the blood
stream since blood (with theatre air and other
contents of the wound) is aspirated from around
the heart and returned to the circulation. Wells
et al. (1983) suggested that bowel flora was


