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The treatment of bacterial diseases is facing twin threats, with increasing bacterial antibiotic resistance and relatively few novel
compounds or strategies under development or entering the clinic. Bacteria frequently grow on surfaces as biofilm communities
encased in a polymeric matrix. The biofilm mode of growth is associated with 65 to 80% of all clinical infections. It causes broad
adaptive changes; biofilm bacteria are especially (10- to 1,000-fold) resistant to conventional antibiotics and to date no antimi-
crobials have been developed specifically to treat biofilms. Small synthetic peptides with broad-spectrum antibiofilm activity
represent a novel approach to treat biofilm-related infections. Recent developments have provided evidence that these peptides
can inhibit even developed biofilms, kill multiple bacterial species in biofilms (including the ESKAPE [Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species]
pathogens), show strong synergy with several antibiotics, and act by targeting a universal stress response in bacteria. Thus, these
peptides represent a promising alternative treatment to conventional antibiotics and work effectively in animal models of bio-
film-associated infections.

Pathogenic bacteria are dynamically evolving organisms that
are capable of causing infections in a large variety of hosts,

including humans, animals, plants, and insects. The discovery and
deployment of antibiotics had a massive impact on modern med-
icine, since many diseases caused by infectious bacteria (e.g.,
pneumonia) could be successfully treated. A large arsenal of dif-
ferent antibiotics, either from natural sources or produced by
semisynthetic or synthetic means, has been developed, to help
physicians treat bacterial infections. In a world without antibiot-
ics, even minor injuries might lead to serious health problems, and
procedures such as major surgeries, cytotoxic therapies, trans-
plantations, etc., would be virtually impossible. Unfortunately,
antibiotics are a victim of their own success, since their broad
availability, low cost, and tremendous effectiveness have led to
their overuse in hospitals and agricultural settings. This has cre-
ated ideal conditions for the selection and spread of antimicrobi-
al-resistant microorganisms. The most concerning microbes in
hospitals are the so-called ESKAPE (Enterococcus faecium, Staph-
ylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) pathogens.
This global resistance threat, which has steadily increased over
several decades, has led to less active or ineffective drugs (1). Re-
cently, it was reported that a bacterial strain developed resistance
toward polymyxin, a last-resort antibiotic for multidrug-resistant
Gram-negative infections (2).

Antimicrobial agents are the first-line treatment for sepsis, a
complex clinical syndrome involving an underlying infection in
conjunction with a dysfunctional host immune response (i.e., sys-
temic inflammatory response syndrome) (3). Given the 18 million
cases of sepsis worldwide and the very high (�30%) rate of mor-
tality, the 5 million deaths from sepsis (210,000 in the United
States) reveal the enormous current impact of ineffective antibi-
otics combined with a lack of host-directed immune therapies for
sepsis (4). Similarly, patients with a perturbed immune system
(e.g., undergoing chemotherapy, immunosuppressive disease,
major injuries, or burns) acquire infections that are often more
difficult to treat. Another significant cause of microbial infections
is biofilm-associated infections (5). Biofilms are structured aggre-
gates of microorganisms embedded in a matrix composed of poly-

saccharides, extracellular DNA, proteins, and/or lipids (6). Bio-
film-related infections typically involve colonization and strong
attachment to various living (in chronic infections such as endo-
carditis, osteomyelitis, colonization of lungs [e.g., in cystic fibrosis
or chronic obstructive pulmonary disease], dental caries, etc.) and
nonliving (central venous and urinary catheters, stents, orthope-
dic prosthesis, mechanical heart valves, contact lenses, etc.) sur-
faces (7). Biofilm formation on surfaces can result in recalcitrant
septic complications, and the only option for treating, e.g., an
implant-related infection is to remove the device, treat the infec-
tion with antibiotics, and replace the implant (8). However, this
procedure tremendously increases both treatment costs and pa-
tient trauma as well as increasing the risk of complications (9).

Biofilms are a growth adaptation to environmental stress that
enables the organisms to resist stressors, including the host im-
mune system and antibiotics, making them difficult to treat and
eradicate (10, 11). If bacteria succeed growing and forming a bio-
film within a host, the infection will become very difficult to treat
and will further develop into a chronic biofilm-based infection
(12). Bacteria growing in biofilms exhibit increased (adaptive)
resistance to essentially all antibiotics, and while some antibiotics
are used in such infections, with mixed success, to date not a single
antibiotic has actually been developed for biofilm infections.
Thus, while antibiotics are the single most successful medical in-
tervention (13), we are urgently in need of alternative strategies to
treat and prevent infections, especially biofilm infections.

Bacteria are rarely found as planktonic (free-swimming) or-
ganisms in nature but rather are found associated with surfaces or
microbial mats in response to environmental stresses (14) and
generally tend to be polymicrobial, often involving both bacteria
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and fungi. In the human body, most chronic infections are
thought of as containing one prominent bacterium, although
there are important exceptions, e.g., dental biofilms (known as
plaque) that contain hundreds of species (15) or bacterial biofilms
formed by multiple species in chronic nonhealing wounds (12).
Biofilms undergo a staged development process that varies from
organism to organism but generally follows at least five processes:
surface association, gene expression changes leading to tight sur-
face binding, microcolony formation, construction of a mature
biofilm colony, and partial dissolution and dispersal of planktonic
organisms that have the potential to nucleate new biofilms at dis-
tant locations. The processes are disparate but appear to involve
various adhesins for initial attachment and formation of an intra-
biofilm matrix (e.g., various polysaccharides, extracellular DNA,
etc.) that may function in both tight binding and association of
organisms in the biofilm. The basis for initiation of the biofilm
development program is still unclear, but it appears to involve
adherence to surfaces, which triggers regulatory responses, and
stress or stress-like conditions, perhaps triggering the stringent
stress response mediated through the nucleotide signal ppGpp.
Other signals that have been described are cyclic dinucleotides and
quorum sensing. Thus, biofilm formation is associated with sig-
nificant lifestyle changes, and these provide both an opportunity
and a substantial challenge when considering the medical aspects
of biofilms. The opportunity is based on a series of unique events
that can be considered potential targets for inhibiting biofilm bac-
teria, such as, e.g., interference with quorum-sensing pathways by
inhibiting enzymatic degradation of produced signal molecules or
by blocking signal reception/production (16). It has been demon-
strated in P. aeruginosa that mutants defective in various quorum-
sensing systems form flat, undifferentiated biofilms (17), suggest-
ing that quorum-sensing signals act at the level of biofilm
maturation in many cases, although the specific targeted signals
vary from organism to organism.

The challenge, however, is that microbes growing in a biofilm
demonstrate high resistance (10- to 1,000-fold compared to that
for planktonic growth) toward almost all conventional antibiotics
and antiseptics (18). Various factors have been proposed to ac-
count for this high resistance to antimicrobials, including the dif-
ferential expression of many genes (some influencing antibiotic
susceptibility), secretion of an extracellular matrix that might act
to bind certain antibiotics, the trapping and consequent higher
local concentration of antibiotic-degrading enzymes, and the low
metabolic state at the base of the biofilm (19). Regardless of the
cause, resistance is adaptive, since as biofilm-related resistant bac-
teria disperse from a biofilm, they revert to their planktonic sus-
ceptible phenotype (11). Susceptibility testing of recalcitrant bio-
film cells is rarely performed in clinics or during the antibiotic
discovery and development process, since conventional methods
are not able to detect this type of resistance under laboratory con-
ditions (19).

CONVENTIONAL COMBINATION THERAPY APPROACHES TO
BIOFILM TREATMENT

Biofilm-related infections are difficult to treat in clinical environ-
ments, and to date no antimicrobial agent has been specifically
developed to address this problem (19). Therefore, physicians of-
ten use a cocktail of various antibiotics, largely from distinct an-
tibiotic classes (e.g., �-lactams paired with aminoglycosides or
fluoroquinolones) (18). A potential benefit of having two antimi-

crobial agents is a possible synergistic effect (i.e., an enhanced rate
of killing of microbes) to more effectively treat bacterial infections
such as those associated with ventilator-associated pneumonia or
sepsis (20). However, the use of broad empirical coverage of two
antibiotics from different classes raises the question of whether
combined therapy is beneficial for the patient or whether it aids
the development of multidrug-resistant bacteria.

Almost no data exist on synergistically treating organisms
growing in biofilms. Although some potential combinations to
overcome adaptive resistance of biofilms have been demonstrated
(e.g., using a colistin-tobramycin combination for clearing Pseu-
domonas-related pulmonary biofilm infection) (21, 22), the mo-
lecular mechanisms driving the synergistic effects of two different
antibiotic classes are poorly understood. For example, the amino-
glycoside tobramycin and the macrolide clarithromycin show
synergistic effects on clearing biofilms, although the individual
antibiotics have only moderate effects (22). Conversely, combina-
tions of tobramycin with other macrolides (such as azithromycin)
show antagonistic effects, i.e., reduced effectiveness compared to
that for individual usage (22). Thus, we need to gather more in-
formation about the mechanisms underlying synergistic treat-
ment of biofilm infections.

A NOVEL APPROACH TO BIOFILM TREATMENT:
ANTIBIOFILM PEPTIDES

In recent years, various approaches to treat bacterial biofilm in-
fections (e.g., quorum-sensing antagonism, antibodies, antiadhe-
sion strategies, bacteriophages, etc.) have been developed (23).
One promising alternative is based on a new property of cationic,
amphipathic peptides (24). These antibiofilm peptides are a dis-
tinct group of the antimicrobial/host defense peptides. Natural
peptides range in size from 12 to 50 amino acids with a net charge
of �2 to �9 (due to the presence of several Arg or Lys residues)
and around 50% hydrophobic amino acids, and they have diverse
amino acid sequences and structures (24). Interestingly, antimi-
crobial peptides developed for killing planktonic bacteria possess
a broad-range activity and a low rate of inducing bacterial resis-
tance (14), and they continue to be developed clinically. More
than 2,600 peptides (25) have been identified in all forms of life. In
higher organisms, they are part of the innate immune response
and act as important host defense molecules. Their natural activ-
ities range from modulation of immunity and other host re-
sponses to direct bacterial killing (26).

Starting from the observation that the human cathelicidin
LL-37 was able to inhibit Pseudomonas biofilm formation at 1/16
of its MIC for planktonic organisms (27, 28), it was subsequently
demonstrated that antibiofilm peptides were a distinct subset of
peptides with similar overall amino acid compositions but distinct
structure-activity relationships compared to those of antimicro-
bial peptides (29). Generally speaking, it has been possible to gen-
erate novel antibiofilm peptides that (i) kill multiple species of
bacteria in biofilms (with a minimal biofilm eradication concen-
tration of less than 1 �g/ml), including major clinically relevant
antibiotic-resistant Gram-negative and Gram-positive bacteria
(Fig. 1A), (ii) work synergistically with antibiotics in multiple spe-
cies (Fig. 1B), and (iii) are effective in animal models of biofilm
infections such as, e.g., P. aeruginosa (30). Structure-activity rela-
tionship studies have confirmed no major overlap between anti-
biofilm and antimicrobial (versus planktonic bacteria) activities,
and indeed organisms completely resistant to antibiotic peptides
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(e.g., Burkholderia spp.) can still be treated with antibiofilm pep-
tides (29).

Intriguingly, LL-37 fits into the class of peptides termed host
defense peptides, which can modulate the immune response to
infection, thereby assisting the body in recognizing and clear-
ing invading bacteria (31). Thus, LL-37 shows strong anti-in-
flammatory activity in dampening pathogen-induced proin-
flammatory cytokines as well as recruiting key effector cells
responsible in responding to infections. LL-37 demonstrates a
broad range of host-directed activities, including the upregu-
lation of neutrophil responses, downregulation of proinflam-
matory cytokines and gamma interferon (IFN-�) (31), in-
creased angiogenesis (32), increased rat survival in a lethal
sepsis model (33), and improved wound healing (34). As men-
tioned above, despite its weak antimicrobial activity, it inhibits
and eradicates preformed bacterial biofilm formation at very
low concentrations (27). Moreover, LL-37-derived peptides
were able to eradicate existing biofilms of methicillin-resistant
S. aureus (MRSA) in wounded human skin (35). Thus, this
demonstrates a potential added benefit for antimicrobial infec-
tion, i.e., an ability to favorably modulate host immunity, es-
pecially suppressing inflammation, which often accompanies
chronic biofilm-mediated infections.

BROAD SPECTRUM OF IMMUNOMODULATORY PEPTIDES
WITH ANTIBIOFILM ACTIVITY

A major breakthrough was made when it was realized that pep-
tides much smaller than LL-37 were able to effectively inhibit
biofilms, including the nine-amino-acid peptide 1037. Indeed,
a peptide originally selected as an optimized antibiofilm pep-

tide, IDR-1018 (36), demonstrated very broad-spectrum activ-
ity against representative nosocomial pathogens, including P.
aeruginosa, Escherichia coli, A. baumannii, K. pneumoniae, methi-
cillin-resistant S. aureus, Salmonella enterica serovar Typhimu-
rium, and Burkholderia cenocepacia (37). At 10 �g/ml, the pep-
tide killed organisms even in preformed biofilms (Fig. 1A),
while at 0.8 �g/ml, the peptide induced biofilm dispersal. Both
flow cell biofilms and simple plastic adhesive biofilms could be
inhibited.

It is important to highlight that increased dispersal of bacterial
cells from biofilms might represent a potential danger in clinical
settings, as dispersed cells may infect other organs or cause septic
shock (38), indicating that it might be important to utilize such
peptides in combination with antibiotics. In this regard, Ref-
fuveille et al. (39) showed synergy between peptide 1018 and a
variety of highly utilized clinical antibiotics (ceftazidime, cip-
rofloxacin, imipenem, and tobramycin) against several multi-
drug-resistant ESKAPE pathogens (Fig. 1B). Due to the synergy
between antibiofilm peptides and conventional antibiotics, a
large drop in antibiotic MIC was observed with many combi-
nations. Even short-term treatment with IDR-1018 and cipro-
floxacin prevented biofilm formation and eradicated preexist-
ing P. aeruginosa biofilms (39). Thus, these peptides represent a
genuine antiresistance strategy for biofilm bacteria. Indeed, anti-
biofilm peptides were recently shown to reverse K. pneumoniae
carbapenemase (KPC)-mediated resistance in K. pneumoniae, in
that, e.g., 0.0625 �g/ml meropenem combined with 0.125
�g/ml DJK5 led to complete eradication of preexisting flow cell
biofilms (40).

FIG 1 Overview of antibiofilm peptide activity based on the example of IDR-1018. The peptide structure was originally published by Wieczorek et al. (56), and
the structural coordinate file was kindly provided by Suzana Straus. (Republished from reference 39.) (A) Antibiofilm peptides are able to inhibit developed
biofilms and kill multiple species in biofilms, including the ESKAPE pathogens. (B) Antibiofilm peptides show strong synergy with several antibiotics, thereby
completely eradicating preformed biofilms. (C) Antibiofilm peptides act by targeting a universal stress response in bacteria.
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METHODS TO OPTIMIZE AND IMPROVE ANTIBIOFILM
PEPTIDES

An easy, reliable, and relatively inexpensive method for screening
large numbers of synthetic peptides is the SPOT synthesis (peptide
array) technique (41). This procedure involves robotic synthesis
of peptides on addressable spots, containing diglycine linkers, on a
cellulose membrane by stepwise coupling of 9-fluorenylmethoxy-
carbonyl (Fmoc)-derivatized amino acids followed by deprotec-
tion and cleavage from the membrane (42). With this technique,
hundreds of peptides can be synthesized in parallel and relatively
inexpensively. Cherkasov et al. (43) used this approach to identify
structure-activity relationships among the antimicrobial peptides,
and this combined with neural network methods enabled compu-
tational predictions of the activity of virtual peptides based solely
on the amino acid sequence.

Recently, Haney et al. (44) used a SPOT-synthesized peptide
array on cellulose membranes to assess and improve both the an-
tibiofilm and immunomodulatory (anti-inflammatory and
chemokine induction) activities of hundreds of variants of the
12-mer peptides IDR-1002 and HH2 against S. aureus biofilms.
They used single amino acid substitutions to exchange one of nine
optimal amino acids, previously found in good antibiofilm pep-
tides (29), into every position of these 12-mers. The information
obtained about the biological activity of these peptides was com-
bined and incorporated into the design of new peptides with more
than one favorable substitution. This allowed the identification of
a novel peptide, 2009, with an overall improved activity profile.
However, they also pointed out that although individual improve-
ment through substituting single amino acids leads to fine-tuning
of a peptide, a combination of all possible improvements might
lead to an unintended overall decrease in activity (e.g., decreasing
hydrophobicity prevents membrane interaction).

In another approach, de la Fuente-Nunez et al. (30) designed
and screened various protease-resistant D-enantiomeric peptides,
including retro (D-amino acid sequence) and retro-inverso (re-
versed D-amino acid sequence) versions of peptides related to the
known synthetic innate defense regulator (IDR) peptide 1018 that
had demonstrated good broad-spectrum antibiofilm activity (37).
It was found that D-amino acid versions of peptides tended to be
more active; however, there was no obvious relationship between
enantiomeric composition and activity, as might be expected if
there was a specific “receptor” for these peptides in bacteria.
Moreover, these peptides showed broad-spectrum activity, both
preventing biofilm formation when added at the initial stages of
biofilm formation and promoting bacterial dispersal and eradica-
tion when added after 2 days of biofilm growth. Like for peptide
1018, the best D-enantiomeric peptides showed synergy with se-
lected conventional antibiotics in eradicating mature biofilms
produced by various organisms (30).

Developing optimized antibiofilm peptides, while at the same
time minimizing cytotoxicity, reducing proteolytic degradation,
and promoting synergy with conventional antibiotics, is clearly an
important step in fighting antibiotic-resistant biofilm infections
(45, 46). One major challenge with the development of new anti-
microbial peptides is still the high production costs of such pep-
tides. Another important factor to consider is the importance of
empirical testing of new compounds. While using an inexpensive
high-throughput method such as biofilm detection using crystal
violet might be suitable for screening of large peptide libraries, it

does not really mimic many types of biofilms, and it is neces-
sary to experimentally confirm observed phenotypes using al-
ternative methods such as flow cells. Possible approaches to
reducing production costs are, e.g., shorter peptide analogs,
recombinant peptide production, or improvement of pharma-
cokinetics to decrease the required dose (24). Additionally,
computational modeling enables a strong understanding of
structure-activity relationships among peptides. In silico ap-
proaches may drastically reduce time and costs by helping to
identify, develop, and optimize novel peptides (e.g., with im-
proved antimicrobial properties) (47).

PEPTIDES DESTROY COMPLEX ORAL BIOFILMS

Biofilms in nature and disease and especially in the oral cavity
often involve consortia of different organisms. It was recently
shown that peptide IDR-1018 is able to inhibit as well as destroy
mixed-bacterium oral biofilms (48). Dental plaque is a biofilm-
related oral infection caused by microbial communities com-
prised of hundreds of microorganisms exhibiting high antibiotic
resistance (49). Thus, it was shown (48) that peptide 1018 was able
to kill oral biofilms on hydroxyapatite (the primary mineral in
tooth enamel) surfaces. Moreover, a combined treatment for only
1 to 3 min with IDR-1018 in combination with the traditional oral
disinfectant chlorhexidine increased the antibiofilm activity, caus-
ing a significant reduction in biofilm volume and increased num-
bers of dead cells within the biofilms.

ANTIBIOFILM PEPTIDES TARGET A CELLULAR STRESS
RESPONSE

Antimicrobial peptides have complex mechanisms of action, di-
rectly targeting either bacterial membranes, causing loss of cellu-
lar integrity and/or disruption of macromolecular synthesis de-
pendent on a membrane-linked event (e.g., cell wall biosynthesis),
or translocation through the membrane to reach an intracellular
target (45). However, since antibiofilm peptides are distinguish-
able from antimicrobial peptides, they must have a unique mech-
anism of action that involves the biofilm lifestyle. Many events in
biofilm development are highly variable between the different or-
ganisms that are targeted by antibiofilm peptides, including adhe-
sion organelles, the matrix components, whether biofilms are
structured or not, quorum-sensing mechanisms, and dispersal.

It is generally considered that starvation conditions promote
biofilm formation and that bacteria living under starvation con-
ditions show increased antibiotic tolerance (50). Antibiotic toler-
ance associated with nutrient limitation is a tightly controlled reg-
ulatory pathway. For example, activation of the stringent response
leads to increased antibiotic tolerance during starvation in P.
aeruginosa (50). Through activation of the stringent response,
bacteria are able to cope with stressful environmental situations
(including amino acid, carbon, nitrogen, iron, phosphorus, or
lipid limitation, as well as oxidative and temperature stress). The
stringent response involves the synthesis of the small signaling
nucleotides (i.e., “alarmones”) guanosine pentaphosphate and the
active moiety tetraphosphate (ppGpp), which serves as a second-
ary messenger molecule to coordinate the stress response by bind-
ing to and altering the specificity of RNA polymerase (Fig. 1C).

In most bacteria, the two homologous proteins RelA and SpoT
are responsible for modulating intracellular concentrations of
ppGpp (51). Interestingly, the stringent stress response is highly
conserved among Gram-negative and Gram-positive bacteria, but
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some bacteria (e.g., S. aureus) express only a single RelA/SpoT
homolog, Rsh (30, 37, 51, 52). RelA is a monofunctional synthase
able to generate pppGpp using GTP and ATP, which is subse-
quently dephosphorylated to ppGpp. SpoT or Rsh homologs have
a bifunctional hydrolase-synthase activity and can therefore syn-
thesize ppGpp and pppGpp (and hydrolyze it to GDP, GTP, or
pyrophosphate) (Fig. 1C) (51).

The stringent response appears to play an important role in
biofilm development, since mutants lacking both RelA and SpoT
(or Rsh) are unable to form biofilms in various organisms (30, 37,
52). Activation of the stringent response affects transcription of
hundreds of genes that collectively act to divert cellular energy
away from cell division and into altered metabolism and stress-
coping mechanisms. Currently, the specific role of (p)ppGpp in
biofilm development is unknown, but it might be involved in ini-
tiating and/or perpetuating biofilm development and/or limiting
dispersal (37).

The antibiofilm peptides 1018, DJK-5, and DJK-6 were all
shown to act by binding to and triggering the degradation of
ppGpp (30, 37). Direct interaction was demonstrated by the co-
precipitation of IDR-1018 with ppGpp and by 31P nuclear mag-
netic resonance (NMR) line broadening (37). When added to cells
from multiple different bacterial species treated with DL-serine
hydroxamate (SHX) (a serine analog that inhibits seryl-tRNA syn-
thetase) to trigger the stringent response, 1018 caused complete
loss of ppGpp within 30 min as monitored using NMR spectrom-
etry on intact cells and thin-layer chromatography of cellular con-
tents. Furthermore, overexpression of the RelA synthase gene
blocked peptide IDR-1018 action in P. aeruginosa and S. aureus
strains, while genetically turning off ppGpp synthesis in 2-day-old
Pseudomonas biofilms mimicked the action of 1018 on preformed
biofilms.

PEPTIDES SHOW PROTECTION IN ANIMAL MODELS

Bacterial colonization on implant devices is a major threat to pa-
tients (8, 9) and antibiotic treatment an inevitable consequence,
thereby increasing the risk of emerging multidrug-resistant bac-
teria. In vivo experiments in a murine model of S. aureus orthope-
dic implant biofilm infections showed that peptide IDR-1018 ac-
celerates S. aureus clearance by decreasing the bacterial burden on
implants, recruiting macrophages to the infection site, and pre-
serving osseointegration (i.e., connection between the bone and
implant) (53). Conversely, the D-enantiomeric protease-resistant
peptides DJK-5 and DJK-6 were more active than peptide 1018
and its retro-inverso equivalent RI-1018 in showing protection
against lethal P. aeruginosa biofilm infections in the nematode
Caenorhabditis elegans and insect larvae of the moth Galleria mel-
lonella (30).

Peptides have been tested for their ability to clear bacterial
infections in various models, although in most cases the activity
was attributed to immunomodulatory activity, increasing infec-
tion-resolving mechanisms such as induction of recruitment of
phagocytic cells while suppressing inflammatory cytokines. Thus,
activity has been demonstrated in animal infection models against
S. aureus, E. coli, multidrug-resistant tuberculosis, and cerebral
malaria as well as in models of wound healing and preterm birth
(36, 54).

CONCLUSION

The treatment of bacterial infections caused by biofilm-producing
microbes is currently a difficult and complex challenge but is im-
portant due to their major threat to human health. Biofilm-related
infections are highly adaptively resistant to numerous antibiotics,
and many infections of this type cannot be adequately treated with
a single antimicrobial drug. Currently, there are no compounds
available that specifically address biofilm infections, and the lack
of appropriate clinical methods to determine the resistance pro-
files of clinical isolates under biofilm growth conditions is a major
issue. The failure to treat chronic infections that are usually caused
through biofilm recalcitrance highlights the urgent need for new
strategies to fight these infections. High concentrations of antibi-
otics, which might inhibit or disperse biofilm growth, can be toxic
to the human body, and even these are not guaranteed to success-
fully treat such infections. Hence, finding a treatment to block the
distinct biofilm growth state represents a promising strategy. In
particular, interrupting the complex regulatory systems involved
in biofilm formation without selecting for resistant populations
has the potential to lead the way in the future. Antibiofilm peptides
have broad-spectrum activity and thus are exciting prospects. In ad-
dition, they demonstrate exciting synergy with conventional antibi-
otics. They appear to be less prone to cause resistance mechanisms
(but can still engender resistance, as recently demonstrated for LL-37
[55]) than conventional antibiotics. Moreover, selective pressure on
bacterial invaders can be minimized by utilizing them in combina-
tion with conventional antibiotics and/or by developing peptides
with additional immunomodulatory properties. In summary, cur-
rent research has shown that the combined treatment of antibiotics
with antibiofilm peptides offers a very potent treatment of both bio-
film and dispersed infection, thereby forming the basis for novel ad-
juvant therapies.
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