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IntroDuctIon
High-throughput omics studies are rapidly generating a wealth of 
data sets from many model organisms in various physiological states, 
disease conditions or treatments. Recent years have seen a growing 
interest in conducting integrative analysis on these data sets to  
help reduce study bias, increase statistical power and improve  
mechanistic understanding1–4. Two types of data integration are 
commonly used. Horizontal data integration aims to integrate data 
sets measuring the same molecular events—e.g., combining multiple  
gene expression data sets to identify core signatures of complex 
diseases or host responses1,2. Conversely, vertical data integration 
involves joint analysis of data sets from different levels in the omics 
cascade, such as integrating gene expression and metabolomics 
data to gain insights into the underlying biological processes3.  
The term meta-analysis usually refers to horizontal data  
integration. It is sometimes also used to describe comprehensive 
exploratory analyses on a single data set with regard to multiple 
associated metadata or phenotypic labels.

Bioinformatics for data integration is still in its infancy, and 
both the theories and practices are still evolving quickly5–7. Three 
general approaches have emerged, namely the semantic web 
approach, the database approach and the data mining approach. 
The semantic web strategy uses an ontology-based framework 
to enable automatic data integration in a meaningful and intel-
ligent manner8,9. The database-based approach involves creating a 
comprehensive knowledge base by collecting and organizing data 
concerning a particular situation such as a disease or biological 
system10–12. However, the majority of researchers rely on various 
data mining approaches to analyze their own collection of data sets. 
Over the past decade, it has been recognized that effective visual  
exploration by domain experts is the key factor for successful 

extraction of knowledge from integration of large and complex 
omics data sets5,7. Interactive visualization tightly coupled with 
robust statistical and machine-learning techniques has proven to 
be the most effective strategy for facilitating data understanding  
and hypothesis generation. This type of visual data mining  
technique is now generally referred to as visual analytics13,14.

Until recently, to perform such analyses, researchers generally 
needed to be familiar with several complementary bioinformatics 
tools and/or master a statistical programming language. To address 
the growing need for biologist-friendly tools and to enable bench 
researchers to examine data sets for novel insights, we have devel-
oped a series of web-based tools for statistical meta-analysis15,  
visual data mining16 and data integration through the rapid genera-
tion of biological networks17. Together, they offer a comprehensive 
tool suite that allows various common and complex meta-analyses  
to be carried out by biologists via a standard web browser. Based 
on user requests, we have recently integrated all three tools into 
NetworkAnalyst, added new features for visual analytics and 
expanded support for more model organisms. NetworkAnalyst 
has been implemented using an innovative visual analytics frame-
work that integrates server-side statistical computing based on the  
R language (http://www.r-project.org/) with client-side visualiza-
tion using HTML5 and JavaScript. By harnessing the power of 
modern web browsers, NetworkAnalyst reduces the computational 
load on the server and provides users with a fast and interactive 
visual analytics experience. These features will assist biologists in 
the generation of novel hypotheses regarding the mechanisms 
underlying or driving differences in complex data sets, including  
fundamentally new concepts, and the expression differences 
(biomarkers) that underlie the different conditions analyzed.
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Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain 
insights into underlying biological processes. the complicated nature of such analyses requires both advanced statistics and 
innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. networkanalyst 
(http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various 
common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical 
procedures with state-of-the-art data visualization techniques, networkanalyst allows researchers to easily navigate large complex 
gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation 
of new biological hypotheses. this protocol provides a step-wise description of how to effectively use networkanalyst to perform 
network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account 
multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. networkanalyst  
is designed to be accessible to biologists rather than to specialist bioinformaticians. the complete protocol can be executed  
in ~1.5 h. compared with other similar web-based tools, networkanalyst offers a unique visual analytics experience that enables 
data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. all of these analysis 
methods provide the user with supporting statistical and functional evidence.

http://www.r-project.org/
http://www.nature.com/doifinder/10.1038/nprot.2015.052
http://www.networkanalyst.ca
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Comparison with other available tools for data integration
Many excellent web-based tools exist for analyzing a single omics 
data set, such as GEPAS18, GenePattern19, MetaboAnalyst20,21 and 
so on. Similarly, multiple locally installed programs are available 
for interactive visual exploration of omics data or biological net-
works such as TM4 (ref. 22), Gitools23, Cytoscape24 and so on. 
Bioinformatics tools that can be used for integrative data analysis 
are rare and have diverse forms with very different capacities. 
Table 1 compares NetworkAnalyst with several tools that allow 
users to upload their own data sets for data integration analysis.

The most popular web-based tools for integrative analysis of 
gene list data are probably DAVID25 and g:Profiler26. The key 
strength of both tools is the comprehensive support of various 

gene identifiers, microarray platforms and their associated func-
tional annotation. They are also easy to use and fast in response. 
For locally installed programs, Cytoscape is widely used for  
network-based data integration24. Users usually need to prepare 
a network file and/or attribute data for layout and visualization 
with Cytoscape. A popular approach is to first upload the gene 
list to InnateDB27 to build the network file and then visualize 
the result through Cytoscape. Gitools is a stand-alone tool for 
heatmap-based data visualization and integration23. Interactive 
heatmaps coupled with functional enrichment analysis make it a 
very powerful visual analytics tool.

In contrast, NetworkAnalyst is a completely web-based  
application designed to address the statistical and visualization 

taBle 1 | Comparison of tools for data integration.

tools networkanalyst DaVID g:profiler
InnateDB and  

cytoscape Gitools

URLs http://www.networkanalyst.ca     http://david.abcc.
ncifcrf.gov

http://biit.cs.ut.
ee/gprofiler/

http://www.innatedb.ca
http://www.cytoscape.
org

http://www.
gitools.org

Software type Web-based Web-based Web-based Mixed Stand-alone

Supported  
 organisms

Human, mouse,  
D. melanogaster,  
C. elegans and  
S. cerevisiae

>65,000 species >85 species Human, mouse and cow Independent 
(user  
supplied)

Approaches to  
 integration

Statistical meta- 
analysis, visual  
integration and  
PPI network

Comprehensive  
knowledge base

Comprehensive 
knowledge base

PPI network Visual  
integration

Data input Gene or protein lists and gene 
expression data

Gene or protein  
lists

Gene or protein 
lists

Gene or protein lists Genomic  
or gene  
expression 
data

Statistical analysis Meta-analysis (P value, effect 
size, rank, vote counts and 
direct merge)

NA NA NA P value  
combination,  
correlation  
analysis

Enrichment analysis GO and pathway >40 categories GO, pathway, 
TFBS, microRNA, 
disease and PPI 
modules

GO, pathway and TFBS Any (user  
supplied)

network analysis

Interactive ✓ ✓ ✓

Topology ✓ ✓

Customization ✓ ✓

other visual analytics

Chord diagrams ✓

Heatmaps ✓ ✓ ✓
NA, not applicable. See Box 1 for definitions of terms.

http://www.networkanalyst.ca
http://david.abcc.ncifcrf.gov
http://david.abcc.ncifcrf.gov
http://biit.cs.ut.ee/gprofiler/
http://biit.cs.ut.ee/gprofiler/
http://www.innatedb.ca
http://www.cytoscape.org
http://www.cytoscape.org
http://www.gitools.org
http://www.gitools.org
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challenges during meta-analysis of complex gene expression data 
sets. It supports meta-analysis of gene lists or a gene expression 
data set labeled with multiple metadata parameters, as well as of 
multiple independent gene expression data sets. Data integration 
is achieved through robust statistical procedures and then visually  
explored within protein-protein interaction (PPI) networks, 
interactive heatmaps or chord diagrams. The network visuali-
zation component of NetworkAnalyst has been developed as a  
high-performance web-based alternative to Cytoscape, with 
universal online access and built-in support for statistical meta-
analysis. The current implementation supports fast searching, 
zooming and customization, together with module detection 
and functional enrichment analysis—the two most common 
needs during network analysis28. By adopting cutting-edge web 
techniques, NetworkAnalyst offers powerful features that were 
previously only available with locally installed programs and  
the advantage of substantially increased analysis speed and  
centralized management. The integration of statistics, interactive 
graphics and in situ functional analysis allows data to be examined 
from different perspectives, which not only brings more trans-
parency in data analysis but also provides different ways for data 
integrity validation.

Applications
NetworkAnalyst contains many features and functions for a vari-
ety of purposes and applications. In particular, NetworkAnalyst 
supports flexible differential expression analysis (DEA, see Box 1  
for glossary) for a wide array of experimental designs includ-
ing two or multiple group comparisons, time series, common- 
reference design, nested comparisons, as well as paired or block 
design. The underlying statistics are based on the well-established 

limma package29, which was initially designed for microarray 
data analysis and has recently been extended to also support 
RNA-seq data30. For microarray data from humans and mice, 
NetworkAnalyst contains built-in support for popular commer-
cial microarray platforms from Affymetrix GeneChip, Illumina’s 
BeadArray and Agilent one-color microarrays. For data from 
RNA-seq or other array platforms, users need to first convert 
the platform-specific feature IDs to common gene or transcript 
IDs (Entrez, RefSeq, Genbank or Ensembl) before uploading the 
expression tables to NetworkAnalyst. Details on DEA will not be 
covered in this protocol. Instead, this protocol focuses on three 
unique features of NetworkAnalyst, network analysis, visual ana-
lytics and meta-analysis, through analysis of three separate exam-
ple data sets. For more technical details or introductions to other 
features, users are encouraged to consult our screenshot tutorials 
and FAQs posted on the NetworkAnalyst website (http://www.
networkanalyst.ca).

Limitations of the software and protocol
NetworkAnalyst currently supports only five model organisms 
(human, mouse, Caenorhabditis elegans, Drosophila melanogaster 
and Saccharomyces cerevisiae), for which high-quality PPI data 
are available. The underlying protein interaction data were 
obtained from InnateDB11 (for human and mouse), a member 
of the International Molecular Exchange (IMEx) consortium31, 
and iRefIndex32 (for other three species). Both databases provide 
comprehensive PPI coverage by integrating data from a number 
of primary interaction databases including BIND33, BioGrid34, 
MINT35, IntAct36 and so on. For human data, we also offer  
the option to use the high-quality experimentally validated  
binary interaction data, as reported recently by Rolland et al.37. 

Box 1 | Glossary 
DAVID—Database for Annotation, Visualization and Integrated Discovery: http://david.abcc.ncifcrf.gov/
DE—Differentially expressed
DEA—Differential expression analysis
FAQ—Frequently asked questions
FC—Fold change
FDR—False discovery rate: a statistical procedure for multiple testing correction
FEM—Fixed effects model: a statistical model to combine effect sizes of a set of studies
GEO—Gene Expression Omnibus: a repository for gene expression information
GO—Gene ontology: formal functional categorization of genes into functional associations
KEGG—Kyoto Encyclopedia of Genes and Genomes: http://www.genome.jp/kegg/
Limma—Linear models for microarray data
LPS—Lipopolysaccharide: bacterial signature molecule that interacts with Toll-like receptor 4 on host cells to trigger innate immune/
inflammatory responses. Two consecutive treatments trigger a cellular reprogramming termed endotoxin tolerance
ORA—Over-representation analysis
PBMCs—Peripheral blood mononuclear cells: white blood cells
PCA—Principal component analysis
PNG—Portable network graphics: a graphics file format that supports data compression without loss of information
PPI—Protein-protein interaction: physical, biochemical or regulatory interactions between gene products
REM—Random-effects model: a statistical model to combine effect sizes of a set of studies
SVG—Scalable vector graphics: XML-based vector image format for 2D graphics that supports interactivity and animation
TFBS—Transcription factor binding site: the position at which a transcription factor binds; genes sharing TFBS are likely under the 
control of the same transcription factor
TLR—Toll-like receptor: a receptor on immune cells that responds to microbial signatures, also called pathogen-associated  
molecular patterns

http://www.networkanalyst.ca
http://www.networkanalyst.ca
http://david.abcc.ncifcrf.gov/
http://www.genome.jp/kegg/
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At this moment, the tool does not allow users to upload their  
own PPI data for analysis. However, the design of the tool is very 
flexible and scalable, and we intend to add support for more  
species, more platforms and more PPI databases. Users are 
encouraged to give us feedback, as many recent updates were  
in response to user requests.

NetworkAnalyst has been designed as a high-performance web 
application for real-time interactive data analysis and visual explo-
ration. When a user begins analysis, a temporary folder is created 
in which to save user data. The folder is removed after the session 
completes. However, visual data mining is an iterative process, 
and many users have requested to be allowed to continue previous 
analyses instead of starting from the beginning each time. Thus, 
although the public server does not allow users to permanently 
store their data to enable them to resume analysis at a later date, 
we recently added the capability to allow users to download a copy 
of the session file. When they return, they can simply upload the 
session file to enter the visual analytics page without having to 
repeat the time-consuming data preparation steps.

Server performance is another potential limitation when many 
users upload large data sets at approximately the same time. The 
public server currently limits each user to upload a maximum of 
1,000 samples. Researchers who wish to conduct very large-scale 
meta-analyses are encouraged to contact the authors to obtain a 
copy of NetworkAnalyst to install on their local server (Mac or 
Linux based).

Analysis overview
Meta-analysis can be applied to three different types of input 
data: gene lists, a single gene expression data set or multiple 
gene expression data sets. Figure 1 shows the overall design of 
NetworkAnalyst. The complete workflow can be applied when 
users upload multiple gene expression data sets. There are three 
main analysis stages: data preparation, statistical meta-analysis 

and visual analytics. In the data preparation stage, an individual 
data set is uploaded for annotation, normalization and DEA. 
Subsequently, during statistical meta-analysis, the summary-level 
data (i.e., P values, fold changes (FCs) or effect sizes) are extracted 
and integrated to identify genes that are significantly altered in 
expression, based on the overall evidence. Finally, the selected 
genes are presented within PPI networks, chord diagrams or heat-
maps to enable interactive visual data mining. NetworkAnalyst 
has also been designed to support meta-analysis on a single gene 
expression data set labeled with multiple metadata parameters, 
as well as supporting network analysis on gene lists. In such  
cases, users need to be aware that some functions may become 
inapplicable for certain data types. In particular, chord diagrams 
are used to compare multiple analysis results, and they will not  
be available when only a single analysis has been performed;  
similarly, heatmaps require gene expression data and cannot be 
used for gene lists.

During analysis, NetworkAnalyst provides three comple-
mentary navigation aids, the history track on the top of the  
page, the buttons at the bottom and real-time system messages 
(Fig. 2). When users enter a particular analysis page, the system 
will provide feedback to guide users to complete the necessary 

steps. Afterward, users need to click the 
‘Proceed’ button to enter the next page. 
Those completed steps will then become 

Visual analytics

Rank productsP values Vote countsEffect sizes

Genes of interest

Chord diagrams PPI networksHeat maps

Differential expression analysis

Annotation & normalization

Gene expression data

Summary-level data
Statistical meta-analysis

Data preparation

1

2

Figure 1 | NetworkAnalyst analysis flowchart. NetworkAnalyst is composed 
of three main functional modules: data preparation, statistical meta-analysis 
and visual analytics. The complete workflow is available when users perform 
meta-analysis on multiple gene expression data sets. Users can also perform 
meta-analysis on gene lists (dashed line 1) or a single gene expression data 
set (dashed line 2). The ‘resume’ icon indicates the point at which users can 
download a copy of the session and resume the analysis later on.

History track

System
message

Navigation
button

Figure 2 | Navigations in NetworkAnalyst. 
This screenshot of the ‘Network Builder’ page 
illustrates the NetworkAnalyst navigation 
controls during data analysis. The top right 
corner shows a real-time system message 
indicating the current status, and it also 
provides suggestions for the next step. The top 
left corner shows the history track with the 
current page highlighted in orange. Users can 
click the links to go back to the corresponding 
pages. The buttons on the bottom allow users to 
move forward to the next page or return to the 
previous page. Detailed instructions are available 
for each function when users hover the mouse 
over a question mark icon. 
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part of the history track, with the current step highlighted in 
orange. Users can click a link on the history track to go directly 
back to the corresponding page.

The protocol below is organized into three sections with 
increasing complexity: (i) network analysis for a single gene 
list (Steps 1–16); (ii) meta-analysis of a single gene expression 
data set using heatmaps and chord diagrams (Steps 17–31); and  
(iii) meta-analysis of multiple data sets (Steps 32–50). Each  
section illustrates one major function of NetworkAnalyst. Three 
example data sets are provided to demonstrate these procedures. 
The first data set is a gene list of the 99-gene endotoxin toler-
ance signature that predicts severe sepsis and organ failure and  
was identified during a recent study2. The second data set is 

the original gene expression data comparing lipopolysaccha-
ride (LPS)-induced inflammation with endotoxin tolerance 
using human peripheral blood mononuclear cells (PBMCs)38. 
The third data set includes three colon cancer gene expression  
studies downloaded from the Gene Expression Omnibus (GEO). 
All the example data sets can be downloaded from the ‘Data 
Formats’ page on the NetworkAnalyst website. Alternatively, users 
can directly select these data sets from the ‘Try Examples’ dialog 
box during analysis.

Network analysis and visualization for a list of genes (Steps 1–16)
The result of gene expression analysis is usually a list of genes that 
are significantly differentially expressed under the experimental  

Box 2 | PPI network analysis 
PPI networks are often presented as undirected graphs, with nodes representing proteins and edges indicating known interactions 
between two connecting proteins. Two types of analyses are often performed. Topology analysis studies the network itself, and the  
goal is to understand its overall structural properties and organizational principles, whereas the subnetwork or module analysis focuses 
on parts of the network that have shown significant changes in conditions under study, and the objective is to identify important 
nodes, their relationships and collective functions. A subnetwork analysis can be executed in three steps: (i) obtaining the PPI data; 
(ii) building networks based on the user-supplied genes or proteins (called seed nodes in network construction); and (iii) analyzing 
these networks. The main concepts and common practices are briefly discussed below.

network types
First-order interaction network: composed only of the seed nodes and the nodes that interact directly with them. This is the default 
type of network created by NetworkAnalyst.
Zero-order interaction network: composed only of the seed nodes and the edges that interconnect them. This is suitable when  
there are a large number of seed nodes (>500); it can be created by applying the Reduce function on the default network.
Higher-order interaction network: created by including nodes that are more distant from the seed nodes—e.g., by including second, 
third and other interactors; it is suitable when there are very few seed genes. It can be created by applying the Expand function on the 
default network.
Minimum interaction network: created by trimming the first-order network to keep only those nodes that are necessary to connect the 
seed nodes; this is suitable when the first-order network is too dense, whereas the zero-order network is too sparse. This type of  
network can be created by applying the Trim function. All these functions are available on the Network Builder page (Fig. 2).

analysis using modules
Sometimes, a network or subnetwork is still too complex to comprehend. In this case, it is recommended to further break it into 
smaller units (modules) that are more easily interpretable. The main goal in module analysis is to reduce the network complexity  
while still keeping the most interesting functions and connections. How to identify the most relevant modules based on user input 
remains an open issue40. Mathematically optimal solutions that simultaneously capture most biological changes while maximizing  
connectivity are computationally intensive, and the resulting modules are often still very difficult to interpret41,42. NetworkAnalyst  
offers two heuristic approaches to enable fast and intuitive module analysis.
 In the ‘function-first approach’, users first identify enriched functions within the network, and then extract the module containing 
the nodes that are involved in the particular functions of interest; this approach will guarantee that the resulting module is  
interpretable according to the basic functions or pathways that it reflects.
 In the ‘connection-first approach’, users first perform module detection based on the overall pattern of connectivity, and the  
resulting modules are then evaluated on the basis of experimental data obtained from user input, as well as pathway or functional 
enrichment analysis results. This approach will guarantee that the resulting modules will be highly connected. These two approaches 
are very complementary.

analysis of node importance
Within a module or subnetwork, not all nodes are equally important. Many studies have shown that ‘hub’ proteins are more likely to  
be encoded by pleiotropic genes or related to diseases43,44. Hub nodes are potentially key molecules in signaling, as they are highly 
interconnected with dysregulated genes45,46; they receive and integrate multiple signals and pass them on to downstream nodes.  
The most commonly used measure for node ‘hubness’ is centrality. In particular, degree centrality is the number of connections that a 
node has to other nodes, whereas betweenness centrality corresponds to the number of shortest paths passing through the node.  
These are complementary measures of node centrality and hubness. Hub degree reflects local properties, whereas betweenness is based 
on the global connectivity pattern. Nodes that occur between two dense clusters will have high betweenness values but low degree 
values. The node properties table in NetworkAnalyst displays both of these measures adjacent to the networks that are created.  
Users can simply click on a node name to zoom in to see its position and interconnectivities within the current subnetwork.
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or biological conditions. Usually, FCs are also provided to  
indicate the directions and magnitudes of change. Researchers are 
most interested in understanding the individual and the collec-
tive functions of these genes, as well as the relationships among 
them, particularly any nonobvious relationships that will provide 
new biological insights. The most widely used approach for this 
task is functional enrichment analysis and network analysis. The 
basic concepts for conducting network analysis are summarized in 
Box 2. These approaches have been seamlessly integrated into the 
network visual analytics system in NetworkAnalyst. The system is 
ideal for exploring networks with hundreds to thousands of nodes. 
During analysis, NetworkAnalyst will build networks from user-
supplied genes of interest. Several approaches have been imple-
mented to allow users to further customize the networks to control 
their sizes and complexities (as accessed from the Network Builder 
page; Fig. 2). The network analysis is then moved to a visual ana-
lytics environment for more in-depth exploratory analysis.

Using chord diagrams and heatmaps for meta-analysis of 
single gene expression data (Steps 17–31)
Visualization is an essential approach to data integration and 
understanding, as it provides the biologist with the ability to 

discern patterns created through high-end statistical analyses 
and through the use of enhancements such as color coding. Over 
the past decade, many different visualization methods have been 
explored in the bioinformatics community. Some techniques have 
proven to be very effective in displaying a large amount of con-
textual information to address particular needs, such as defining 
the relationship between dysregulated nodes. Box 3 describes the 
three main approaches that are commonly used for visualization 
and integration of gene expression data. The previous section 
describes how to visualize genes of interest within the context of 
biological networks. In this section, we describe two other com-
plementary approaches, namely using chord diagrams for com-
paring the similarities and differences between different analysis 
results and using heatmaps for examining the expression patterns 
across different experimental conditions and phenotypes. We 
demonstrate the main features of these techniques using a single 
gene expression data set associated with two metadata param-
eters. Metadata are variables that are potentially important to the 
interpretation of the results. They include obvious aspects such 
as control versus treatment used in challenge studies, but when 
applied to a complex data set (e.g., humans with a specific disease) 
they can include demographic information about sex, weight, 

Box 3 | Visual analytics for data integration 
Owing to their size and complexity, direct visualization of omics data sets is usually not possible or effective. A common practice  
is to apply analytics to reduce the large amount of data to a point where it can be effectively visualized and explored using  
powerful visualization strategies. During the past decade, many innovative approaches have been developed for gene expression  
data presentation and integration47. Three main approaches have been implemented in NetworkAnalyst, namely, networks, heatmaps 
and chord diagrams.

networks
Biological networks are usually large and complex, without inherent coordinates to enable easy navigation (see Fig. 3 for an example). 
Efficient layout, searching and zooming and customization are crucial support functions during network analysis.
 Network layout: good layout algorithms arrange nodes in a way that balances both visual perception and aesthetics. NetworkAnalyst 
offers several state-of-the-art network layout algorithms based on the well-known Gephi software48.
 Searching and zooming: this function allows users to pinpoint their genes of interest within a complex network. NetworkAnalyst  
will automatically perform a search and zoom in when the user clicks on or enters a node name for search.
 Customization: it is very rare that the default layout or style will be satisfactory; further manual adjustments are often needed to 
improve the quality and to enhance biological insights. In NetworkAnalyst, the size, color and position of nodes can be customized 
individually or in batch mode (i.e., with a node cluster such as a pathway).

chord diagrams
Chord diagrams are an elegant and compact way for summarizing and comparing the similarities and differences among different  
entities. They are very suitable for comparing related results obtained from analyzing multiple data sets or from analyzing a single data 
set with regard to different metadata parameters. Chord diagrams are a circular graph in which segments of the arc represent different 
analysis results, and the chords connecting them represent shared characteristics (e.g., differentially expressed genes). An example 
chord diagram is shown in Figure 6. By clicking the arc of a particular result, users can visualize its differentially expressed genes that 
also appear in any other results. NetworkAnalyst further supports computing genes that are unique to a particular result, or genes  
that are shared among any selected results. These gene lists then become available for functional enrichment analysis.

Heatmaps
A heatmap is a way of visualizing a table of numbers, in which carefully chosen color gradients substitute for numerical variations to 
facilitate pattern discovery by visual inspection. In gene expression heatmaps, rows represent genes, columns represent samples  
and cell colors correspond to gene expression abundances. An example heatmap is shown in Figure 7. Users can easily view gene 
expression changes across samples, conditions and/or studies. Heatmaps are usually coupled with clustering approaches to further 
enhance support for pattern discovery. The heatmaps implemented in NetworkAnalyst allow flexible sorting according to experimental 
conditions or metadata values, as well as clustering based on various distance measures between samples or genes. Users can directly 
drag to select a region of interest for zoom-in visualization and functional analysis. Conversely, they can perform enrichment analysis 
and then click the name of an enriched function to view the expression patterns of the contributing genes. Visualization and  
analytics are seamlessly integrated here to maximize data understanding.
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height, body mass, age and so on, as well as clinical information 
such as diagnosis, temperature, heart rate, treatment, or underly-
ing variables such as genome-wide association data.

Meta-analysis and visualization of multiple gene expression 
data sets (Steps 32–50)
The fundamental prerequisite for meta-analysis is that all of  
the included studies have been performed under comparable 
conditions and/or were testing the same underlying hypothesis. 
Several general steps are involved in conducting gene expres-
sion meta-analysis: (i) data collection involving identification of  
suitable studies and acquisition of data sets (this can include 
data from the literature or gene expression repositories);  

(ii) data cleaning involving quality control and annotation of 
each data set (including mapping different probe IDs to com-
mon gene IDs, and ensuring that metadata or phenotypic labels 
are accurate and consistent); (iii) data analysis including DEA 
for individual data sets to compute summary-level statistics for 
each gene; (iv) performing meta-analysis using suitable statistical 
methods; and (v) interpreting the results. Detailed reviews and 
discussions of various issues and approaches to meta-analysis of 
gene expression data are available6,39. NetworkAnalyst has incor-
porated these steps and good practices to allow users to perform 
meta-analysis on their collection of gene expression data sets. The 
main characteristics of several common meta-analysis approaches 
are discussed in Box 4.

Box 4 | Statistical meta-analysis 
It is usually not advisable to directly combine or compare the gene expression values from different gene expression data sets owing 
to their inherent heterogeneity (i.e., owing to different platforms, protocols and so on). Instead, integration is performed on the 
summary-level data such as P values, effect sizes or gene ranks and so on, as defined below. Many sophisticated algorithms have been 
described in recent years6. Some well-established procedures have been implemented in NetworkAnalyst.

combining P values
This is a very simple approach in which P values are log-transformed and summed together. Larger scores reflect greater overall  
differential expression. Fisher’s method and Stouffer’s method are two popular approaches for combining P values. Stouffer’s approach 
weights P values based on the number of samples in the contributing experiment and their fraction of the entire sample collection, 
whereas Fisher’s method is a weight-free method. When all studies are of similar quality, Stouffer’s method is more appropriate.

combining effect sizes
Effect size is the difference between two group means after normalization by the s.d. for the data set (Cohen’s d). There are two  
popular methods: the fixed effects model (FEM) and the random effects model (REM). The FEM assumes that there is a true effect  
size constant across experiments, whereas the REM treats the effect size as a random variable to accommodate heterogeneity between 
experiments. Cochran’s Q test is often used to evaluate the homogeneity of the data sets. It is the weighted sum of the squared  
differences between individual study effects with the effects pooled across studies. NetworkAnalyst implements a Q-Q plot to help  
users choose the appropriate model. When the estimated Q values have an approximately chi-squared distribution, the FEM assumption 
is most appropriate; otherwise, REM should be used.

combining rank orders
This is a nonparametric approach based on ranks of FCs. In this approach, the FC ratios are computed for all possible pair-wise  
comparisons for each data set. The ranks of the ratios are then used to calculate the rank product for each gene. Permutation tests  
are then performed to assess the null distributions of the rank products within each data set. The whole process is repeated multiple 
times to compute a P value and false discovery rate associated with each gene. It is a very computationally intensive procedure,  
and it requires powerful computers for a very large data sets.

other procedures
NetworkAnalyst also supports two other approaches for data integration. The ‘vote counting’ approach is based on the total number  
of times a gene is considered as differentially expressed during individual data analyses. The ‘direct merging’ approach uses the  
combined gene expression data instead of summary-level data for DEA. Both approaches are statistically inefficient or flawed.  
They are intended for comparison purposes, not as the primary approach for meta-analysis.

MaterIals
EQUIPMENT
Personal computer (including laptop) with an Internet connection

Browser requirements: NetworkAnalyst has been tested on major  
modern web browsers that support HTML5 and JavaScript. We strongly 
recommend the latest Google Chrome (v39+) for best performance  
during visual analytics
Hardware requirements: This is dependent on the size of the data.  
We recommend a ≥2 GHz CPU (Intel Core i5/i7 or equivalent), 4 GB  
physical RAM with at least 2 GB free and a minimum of a 15-inch screen 

•

•

with a screen resolution of 1,280 × 800 or higher. A mouse with scrolling 
support is required for visualization

Data files
NetworkAnalyst has a number of example data sets for testing purposes.  
In the data upload page for each module, users can directly select a test data 
set from the dialog box by clicking the ‘Try Examples’ button. Alternatively, 
users can download the examples from the Data Formats page. To do this, 
first go to the NetworkAnalyst home page (http://www.networkanalyst.ca),  
and then click the ‘Data Format’ link on the top menu bar to enter the 

•

http://www.networkanalyst.ca
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Data Formats page. Under the ‘Example Datasets’, right-click each item 
and choose ‘save link as …’ to save these files into a folder with the default 
names. In particular, the three example data sets used in this protocol for 
illustrating different procedures are described in Equipment Setup

EQUIPMENT SETUP
endotoxin_list.txt (1 on the Example Datasets page) This is a gene list 
example data set that contains 99 Entrez gene IDs together with their  
FC values. These genes and their fold changes comprise the endotoxin  
tolerance signature that predicts endotoxin tolerance, as identified in a recent 
study2. We want to explore these genes with the context of PPI networks to 
generate hypotheses regarding the inter-relationships and functions of these  
signature genes.
endotoxin_data.txt (4 on the Example Datasets page) This data set is  
from a microarray gene expression study designed to measure gene  
expression changes in human PBMCs collected from four healthy donors38. 

The platform is Illumina’s BeadArray, with genes annotated in RefSeq ID. 
There are three experimental conditions (Treatment): control, LPS  
(pro-inflammatory) and LPS-LPS, indicating two doses of LPS treatments 
within a day (leading to endotoxin tolerance). The two metadata parameters  
under consideration are Treatment and Donor. We want to explore the 
influence of the donor effect (basically human genetic variability) on gene 
expression changes caused by experimental conditions.
colon_cancer.zip (5 on the Example Datasets page)  The zip file contains 
three microarray gene expression data sets—dataset1.txt, dataset2.txt and 
dataset3.txt. They contain 500 probes that are randomly selected from  
three GEO data sets—GSE13067, GSE13294 and GSE4554—from three 
independent studies on expression patterns of primary colorectal cancer. 
The platform is Affymetrix Human Genome U133 Plus 2.0 array. As we only 
use a small proportion of the data for illustrating meta-analysis procedures, 
biological interpretation should be treated with caution.

proceDure
network analysis and visualization for a list of genes
1| Starting up. Go to the NetworkAnalyst home page (http://www.networkanalyst.ca) and click the ‘click here to start’  
link to enter the modules overview page.
? trouBlesHootInG

2| Locate the ‘Starting with gene or protein lists’ and click the ‘Proceed’ button within the panel to enter the data  
upload page.

3| Data upload. The required format is a list of gene names with optional FC values. We will use the example gene list data 
file ‘endotoxin_list.txt’ described in Equipment Setup. Specify ‘H. sapiens (human)’ as the organism type and set ID type to 
‘Entrez ID’. Leave the Data Label as the default.

4| Open the downloaded file ‘endotoxin_list.txt’ in any text editor, e.g., Notepad; select all, copy and paste the content 
into the text area of NetworkAnalyst. The gene list is entered either as a single column of gene IDs or in a two-column  
format with each line containing a gene ID and its FC value separated by a space or a tab.

5| Click the ‘Upload’ button. A message will appear in the top right corner summarizing the ID mapping results.  
If successful, the data name (Data1) will appear on the ‘Data Uploaded’ panel on the right, signaling that it is ready for  
the next step.
 crItIcal step The user must specify the correct parameters in order to proceed. The procedure expects the majority 
(>50%) of IDs to be matched. Duplicated entries will be replaced by their averages.

6| (Optional) Users may upload multiple gene lists (i.e., differentially expressed genes from a similar study) at this  
stage by repeating Steps 3–5. NetworkAnalyst allows gene lists to be compared using network analysis or chord diagrams 
in subsequent analyses. When you upload multiple gene lists, it is better to give a meaningful name to your data, such as 
‘endotoxin_data’. Otherwise, the system will give default names in the form of Data1, Data2 … and so on.

7| Make sure that the ‘Data1’ checkbox is checked in the ‘Data Uploaded’ panel and click the ‘Proceed’ button at the bottom 
of the page to enter the next page. If you have uploaded multiple data sets, you can choose which one(s) you would like to 
analyze by selecting or deselecting their checkboxes. The current data type ‘Single Gene List’ is highlighted in orange, and 
only ‘Network Analysis’ is applicable for this data type.
 pause poInt You can save a session file from this page by clicking the ‘Save Current Session’ button. This is usually 
unnecessary for simple gene list data.

8| Network creation. Click the ‘Proceed’ button in the corresponding row. A dialog box will pop up that shows the available 
PPI database(s) and the available data generated from previous analysis. Make sure that the ‘InnateDB Interactome’ and 
‘Data1’ are selected, and click the ‘OK’ button to proceed to the next page.

9| The ‘Network Builder’ page (Fig. 2) is the place where networks are created and customized. On the left panel, five menu 
items are available. Hover the mouse cursor over the help icon beside the ‘Network Tools’ text to view the introductions to 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13067
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13294
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4554
http://www.networkanalyst.ca
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each function. The basic idea behind each function is described in Box 2. The main panel at the top summarizes the overall 
statistics obtained during network construction. Users can download these files by clicking the corresponding ‘Download’ 
link. The bottom panel shows a list of networks that have been identified. Accessing the first-order interaction network will 
typically return one large network (‘continent’) comprising most differentially expressed genes (seeds) and their interacting 
neighbors, with several smaller ones (‘islands’). Most subsequent analyses are performed on the continent.
 crItIcal step We recommend that users adjust the number of nodes so that they are in the range of 200–2,000 for  
practical (visual, biological and computational) reasons, as larger networks will lead to a ‘hairball’ effect, which rarely  
produces any informative outcome, whereas smaller networks will not enable a systems-level understanding.

10| (Optional) Experiment with the use of different functions to see the results. When each function is completed,  
make sure to click the ‘Reset’ button to return to the default state.

11| The default first-order network in the example data set contains ~1,000 nodes, which is a good size for visual analytics. 
Accept the default first-order interaction network and click the ‘Proceed’ button.

12| Visual exploration of the network. Depending on the speed of your Internet connection, it may take up to 30 s to  
load the Network Viewer page. The network viewer (Fig. 3) is on the center of the page showing the largest network, and  
it is surrounded by various supporting tables and tool menus. Mouse events are defined in table 2. Experiment with these 
functions using the current network, using option A to zoom, option B to select or highlight nodes, and to drag and drop 
nodes, or option C to extract the highlighted nodes.
(a) Zoom
 (i)  Zoom in and out on the network with the mouse scroll function; move the network by clicking on an empty area  

within the network and dragging it to a new position; click the ‘Auto fit’ icon from the left tool bar to fit the entire 
network into the current window size.

(B) node selection/highlighting, and dragging and dropping nodes
 (i)  In NetworkAnalyst, node selection is the same as highlighting. Click on the color palette that is located on the top 

left corner of the viewer. Select a color (e.g., light blue), and then click the ‘Choose’ button. The color palette now 
shows the new color. Point the mouse cursor over a node. When its label becomes visible, double-click on a node  
(i.e., transglutaminase 2 (TGM2)). The node is colored with the new color. If you change the Scope option on the  
top menu bar to ‘Node and dependents’, both the node and any of its interacting nodes will be highlighted.

 (ii)  Change the Scope option to ‘Current node.’ Point the mouse cursor over a node. When its label becomes visible,  
click and drag the node to a new position. Change the ‘Scope’ option to ‘Node and dependents’, and then drag a node 
with many connections (e.g., TGM2) to a new position.

 (iii)  NetworkAnalyst has built-in node selection/highlighting functions for results displayed in all major panels including 
Node Explorer, Function Explorer, Module Explorer and Path Explorer. Users can simply click an item of interest in the 
result panel to highlight the corresponding nodes in the network. To manually reposition those nodes, make sure  
that the Scope option is set to ‘Highlighted nodes’, and then drag any highlighted node to a new position.

(c) extract the highlighted nodes as a connected subnetwork
 (i)  Click the Reset icon on the left to return to the default view. Make sure that the Scope option is set to ‘Node and  

dependents;’ highlight the TGM2 node and its interactors. Click the ‘Extract’ icon on the tool panel on the left.  
After ~20 s, the TGM2 and its interacting nodes are now extracted as a new subnetwork module. Note that the TGM2 node 
is not deleted from the original 
network. To do so, you need to 
use the Node Explorer (Step 7).

Top
menu bar

Display
Options

Function
Explorer

Module
Explorer

Network
Explorer

Extract
button

Node
Explorer

Figure 3 | Organization of components in 
Network Viewer. A screenshot of the ‘Network 
Viewer’ illustrates the main organization of 
various components. The current network is 
displayed in ‘plain view’, with two enriched 
pathways (chemokine signaling pathway and 
Toll-like receptor signaling pathway) highlighted 
in different colors. Clicking on the ‘Extract’ 
icon will extract a module that shows the 
interactions among all those highlighted nodes. 
The screenshot is generated in Steps 15–17 using 
example data set 1.
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 (ii)  (Optional) The extracted node cluster is now listed as ‘module0’ in the ‘Network Explorer’ table on the top left panel 
together with other available networks identified from the previous step. Users can click to load another network to 
the viewer. When the steps are complete, make sure to click ‘subnetwork1’ in the Network Explorer table to reload  
it to the current view. 
? trouBlesHootInG

13| Customizing the network. The top menu bar under the history track (Fig. 3) provides tools to control the overall  
style of the network. The ‘Display Options’ on the top right panel (Fig. 3) provides more functions to allow finer control  
over the styles for nodes and edges. Experiment with these functions using the current network, using option A to change 
view, option B to change background, option C to change layout, option D to change node styles or option E to change  
edge style.
(a) change view
 (i)  The default view is ‘Topology’, which uses color gradients to emphasize hub nodes. Change the option to ‘Expression 

view’ to see the expression patterns of the seed nodes within the network. The interacting non-differentially expressed 
nodes are colored gray.

(B) change background
 (i)  Switch to the ‘Topology view’ and change the current background to ‘white’. This is usually preferred for publication  

or presentation. The default black background provides better contrast during interactive visual exploration.
(c) change layout
 (i)  Click the layout dropdown menu and choose the ‘ForceAtlas’ option to change the layout. In the updated view  

(Fig. 4a), hub nodes are moved toward the central area of the network window to form a tightly interconnected ‘core’ 
of the network. Click to apply the ‘YuFan Fu’ layout—observe that all hub nodes are ‘spun out’ to produce a less  
clustered view. In general, the ForceAtlas layout gives a more unbiased view of the relationships between nodes in 
that those that are more connected will be closer together. However, this will produce an indistinct, tight cluster  
for large networks. The default layout uses a combined approach based on ForceAtlas and YuFan Fu, which usually 
provides a decent arrangement. Note that the layout procedures usually use some random values to initialize the  
node positions and then iteratively improve upon the initial layout. The result may be slightly different each time.

taBle 2 | Mouse actions during network visualization and customization.

purpose Mouse event

Single nodea Display node name Mouse over the node

Show more details Single-click the node

Change color Set the highlight color, and then double-click the node

Increase size Repeatedly click the node

Change position Mouse over the node until its label shows up, and then drag the node

Node and its dependentsb Change positions Mouse over the central node until its label appears, and then drag the node

Change colors Set the highlight color, and then double-click the central node

Change sizes Go to Node tab under Display Options and change the node size for ‘highlighted nodes’

Highlighted nodesc Change positions Mouse over any highlight node until its label appears, and then drag the node

Change colors Set the highlight color and then re-perform highlighting

Change sizes Go to Node tab under Display Options and change the node size for ‘highlighted nodes’

Network Zoom Mouse over an empty area, and then scroll

Change positions Mouse over an empty area, and then drag

Change sizes Go to Node tab under Display Options and change the node size for ‘all nodes’
aUsers need to set the Scope option to ‘Current node’. bUsers need to set the Scope option to ‘Node and dependents’. The dependent nodes are those leaf nodes connected only to the central node, without any 
other connections. cUsers need to set the Scope option to ‘Current highlights’. Node highlighting is described in Steps 12B(iii), 16 and 23.
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(D) change node styles
 (i)  Click the ‘Node’ tab under ‘Display Options’, and then click the ‘Submit’ button with the default parameters to  

increase the size of all nodes in the network. Node labels will appear automatically after node sizes reach a  
certain threshold. Alternatively, you can choose to adjust the sizes only for highlighted nodes. These two  
approaches are usually used together (e.g., first apply a new color and then increase the node sizes) to achieve  
better highlighting effects.

(e) change the edge style
 (i)  The edges are interconnecting lines that reflect known interactions between nodes. Both the edge shape and  

edge thickness can be adjusted using functions within the ‘Edge’ tab under ‘Display Options’. Curved edges are better 
for visualization of large networks (Fig. 4a). Change the edge shape to ‘Line’ and edge width to ‘Thick’, and then  
click Submit. These settings usually work better for smaller networks (Fig. 4b,c).

14| Node visualization and manipulation. The ‘Node Explorer’ table in the middle-left panel (Fig. 3) shows all the nodes in 
the current network. These nodes are identified by their IDs and name, together with hub degree and betweenness values. 
For seed nodes, their FC values are given under the ‘Expr’ column. Users can sort the node table by clicking on column  
headers. Manipulate and explore the nodes using option A to view nodes, option B to search nodes, option C to highlight 
hub nodes or option D to delete nodes.
(a) node viewing
 (i) Click a node name (i.e., SA1004-S100 calcium-binding protein A4) to view it in the network.
(B) node search
 (i) Enter a node name (e.g., CCL7) and click ‘Find’ to pinpoint it in the network.
(c) Hub node highlighting
 (i)  Sort the nodes by their degree values in descending order. Use the checkbox to select all nodes with a degree  

value >30. Click the ‘Auto fit’ icon to view all of the highlighted nodes.

a b

c

Figure 4 | Network customization and module extraction. (a) The same network as in Figure 3, but using the ForceAtlas layout (Step 13C) with Expression 
view (red for upregulated and green for downregulated genes). In this layout, it is very easy to see the core of the subnetwork formed by a few key hub nodes. 
(b) The innate immune module constructed using the function-first approach (Steps 15–19). (c) The module identified by the connection-first approach that is 
enriched for genes involved in innate immunity (Steps 21–28). 
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(D) node deletion
 (i)  This is a form of in silico deletion mutation that can be used to remove promiscuous proteins that might skew the  

results. In this case, we want to remove the UBC node (ubiquitin C, ID: P0CG48), which is known to be involved in 
many nonspecific interactions. After resetting to the default view, select the UBC node, and then click the ‘Delete’  
button on the tool bar of the node table. 
! cautIon Network deletion is a computationally expensive task. It involves not only the node itself but also the 
nodes that it connects with. Nodes that connected only to the deleted node will be removed from the resulting  
network. Deleting an important hub node may also break the current network into several pieces. After node deletion, 
NetworkAnalyst will perform network construction on the new node list, update the network layout and recompute  
the centrality values for the remaining nodes.

15| Identification and extraction of functional modules (function-first approach). This process (Steps 15–18) allows the  
identification of important functional modules by using enrichment analysis. The ‘Function Explorer’ on the middle right 
panel (Fig. 3) supports functional enrichment analysis based on gene ontology (GO) terms or pathways according to the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) or Reactome databases. Click the ‘Submit’ button to perform enrichment 
analysis on all nodes using KEGG as the source for annotated pathways. The resulting table shows a list of the pathways  
that are enriched. The top pathway is ‘Chemokine signaling pathway’ with 53 hits within the network.
 crItIcal step The pathways are ranked by their raw P values from over-representation analysis (ORA) based on  
hypergeometric tests. Note that owing to the overlap and interdependence of the genes within the pathways or GO  
categories, multiple testing adjustments such as false discovery rate (FDR) become inappropriate, and the raw P values  
are only used for ranking the results.

16| Use the color palette to set a new highlight color (i.e., green) as per Step 12B(i). Select the ‘Chemokine signaling  
pathway’. The corresponding nodes will be highlighted in green and made larger within the current network (Fig. 3).

17| Set a new highlight color (i.e., light blue) and then select ‘Toll-like receptor signaling pathway’, which is another  
significant pathway that is involved in innate immunity (Fig. 3).

18| Now, to extract a module that will contain all nodes that are related to these two pathways, click the ‘Extract’ button on 
the viewer’s tool bar (Fig. 3). This process may take ~20 s to finish. This module is now listed as ‘module1’ in the ‘Network 
Explorer’ panel (Fig 3). It contains 154 nodes and among them are our 41 differentially expressed genes (queries). This is 
much more concentrated for differentially expressed genes compared with the parent network containing 881 nodes and  
78 queries. This then provides us with new biological insights regarding the endotoxin tolerance signature and its likely 
relationships with innate immune signaling. We can perform enrichment analysis on this new module by repeating Step 15 to 
confirm that the two pathways are indeed significantly enriched in this module. Please note that the total number of nodes 
may be slightly different owing to certain randomness, as well as the dynamic nature of module extraction.

19| Module display. The module is displayed using a default style. We can use the previously described functions (Step 13) 
to perform further customization. Given the smaller size of this subnetwork, it is very amenable to manually dragging the 
node(s) to new positions for discovery and highlight purposes. Figure 4b shows an example of the module produced using 
the automatic layout followed by manual adjustment.
 crItIcal step The order of these steps is important. Make sure that manual layout is performed after automatic layout. 
The server is not aware of the new node positions on the users’ browser. Re-applying the automatic layout later will overwrite 
any previous manual efforts. For this reason, it is essential to save any interesting results after manual adjustment.

20| Save the results. Use the Download menu to save the current module as a portable network graphics (PNG) image, and 
name it ‘innate_immunity_module.png’. The network is also available in the scalable vector graphics (SVG) or GraphML  
format. The latter format can be viewed in other popular network visualization tools such as Cytoscape. You can also  
download the node property tables and the enrichment analysis results by clicking the Save icons at the top of the  
corresponding tables.
 crItIcal step Note that the node property table and enrichment analysis results are generated dynamically on the  
basis of the current network and selections. It is important to save the results at the time of the analysis and to give  
them meaningful names.

21| Module detection and extraction (connection-first approach). Click on ‘subnetwork1’ in the ‘Network Explorer’ panel on the 
left (Fig. 3) to reload the main network into the network viewer.

http://www.uniprot.org/uniprot/P0CG48
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22| Click ‘Module Explorer’ on the bottom right (Fig. 3) to bring up the panel, and then click the ‘Perform Module Detection’ 
button. A list of modules will be returned together with summary statistics about their sizes, P values and how many seed 
nodes they contain.

23| Click any module to view its nodes highlighted in the current network. You can set new colors for different modules. 
Some of the significant modules detected with this approach mainly reflect direct PPI. This is anticipated as we can clearly 
see this modular structure in the network (Fig. 3).

24| The P values are computed by the Mann-Whitney-Wilcoxon tests to compare the number of connections of each node 
with that of other nodes within the module and with that for nodes outside the module. We also need to consider the  
biological content (i.e., number of seeds and FCs) captured in each module. In this example, select the top four modules 
with P values of <0.05 and that contain at least three seed nodes.

25| Extract these four modules of interest by clicking the ‘Extract’ button in the network viewer.

26| Perform pathway enrichment analysis on the nodes within this extracted module using KEGG by repeating Step 15.  
It is reassuring that the innate immune pathways ‘Chemokine signaling pathway’ and ‘Toll-like signaling pathway’ are among 
the top pathways in the list. It is thus clear that this is a major theme in our uploaded gene list.

27| (Optional) At this stage, the expert biologist might like to explore the pathway list for the pathways that are not  
anticipated as a method for discovering new mechanisms underlying these data sets.

28| Further customize the module as described in Step 13, and save the results as a PNG or SVG image. An example output is 
shown in Figure 4c.

29| Download the node property table from the ‘Node Explorer’ on the middle left panel and the enrichment analysis result 
table from the ‘Function Explorer’ on the middle right panel and save them to files with suitable descriptive names.
 crItIcal step It is easy to collect massive amounts of data, so we recommend that when saving results you should keep 
in mind the goal of developing new biological insights. Remember that the purpose of the above exercise was to obtain new 
biological insights regarding these signature genes and how they might be related to the development of sepsis and organ 
failure. Thus, results that shed light on the mechanisms and functions associated with this signature are important to save.

Meta-analysis of a gene expression data set with multiple metadata parameters
 crItIcal The following procedures are described for microarray data sets, but NetworkAnalyst works equally well for  
count data from RNA-seq experiments. For RNA-seq data, users need to first annotate those platform-specific feature IDs by 
transforming them into common gene or transcript IDs (Entrez, RefSeq, Genbank or Ensembl) before uploading the count 
tables to NetworkAnalyst.

30| Starting up. Click the ‘Home’ icon to return to the home page, and then click on ‘Click here to start analysis’. Locate 
‘Starting with a microarray or RNA-seq data’ and click the ‘Proceed’ button within the panel to enter this module.
! cautIon Although most browsers support multiple tabs, do not access NetworkAnalyst from more than one tab during the 
analysis. Opening up multiple connections to NetworkAnalyst within the same browser will cause unpredictable behavior  
of the application and the results.

31| Data Upload. The ‘Data Analysis’ page provides step-by-step procedures for data preparation for a single gene  
expression data set. Click the ‘Browse’ button to locate ‘endotoxin_data.txt’ file, and then click ‘Submit’ to upload the  
data. Alternatively, click the ‘Try Examples’ button at the bottom, and then choose the ‘Endotoxin’ data set. Depending  
on the speed of the Internet, the process may take a while. A message will appear indicating that the data have been  
successfully uploaded.
 crItIcal step The required format is a tab-delimited text (.txt) file with genes or probes in rows and samples in  
columns. The sample names must be in the first line, followed by the metadata labels. Multiple metadata parameters can  
be provided (for example, treatment type, demographic information such as age or sex, response to treatment and so on). 
Each metadata parameter should start with a new line beginning with #CLASS:’ (e.g., #CLASS:Treatment to indicate the 
Treatment metadata). Users can click on and visit the ‘Data Format’ page for more instructions. Large data sets can be 
uploaded as a .zip file.
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32| Data set annotation. Annotations of data sets are required in order to perform functional analysis in later stages. For the 
example data set, set Organism to ‘H. sapiens (human)’, ‘Microarray data (intensities)’ as the Data Type, ‘RefSeq ID’ as the 
ID type and ‘Mean’ for Gene-level Summarization. For RNA-seq data, ‘Sum’ is more correct for read counts. Click ‘Submit’ to 
perform the annotation. After ~20 s, a message will display indicating the status and summary of the annotation results.

33| Data normalization. The example data are already normalized, so keep the default option ‘No normalization’ and click 
‘Submit’. Users can use the ‘View data’ function to generate two useful summary plots. Box plots can be used to check the 
normalization status. If all data values are below 20, then the data are already on a log scale; if all samples have identical 
distributions, then the data are already quantile normalized. Principal component analysis (PCA) plots can be used for  
checking the overall data quality and discovering unusual patterns. For RNA-seq data, users should choose the ‘log counts 
per million’ or ‘log counts per million followed by quantile normalization’ method, which uses the ‘voom’ function to  
transform raw read counts to log counts per million with associated precision weights. After this transformation, the  
data can be analyzed using the same functions as would be used for microarray data.

34| DEA. NetworkAnalyst allows flexible comparisons for a variety of complex study designs (Fig. 5). For illustration  
purposes, we will compare the treatment effects (relative to control) of LPS (inflammatory) with those of double LPS  
(endotoxin tolerance inducing) without (option A) and with (option B) considering any donor effect (effect of human  
genetic variation in individual donors that provided PBMCs for analysis). The approach is very basic: performing DEA  
separately (LPS versus control, LPS_LPS versus control, LPS versus LPS_LPS) and then visually comparing the results.
(a) performing comparisons without considering the donor effect
 (i)  Under ‘Study design’, for metadata of interest, select ‘Treatment’ as the primary (condition of interest) and leave the  

secondary as ‘Not Available’. Click ‘Submit’.
 (ii)  Under ‘Comparisons’, choose ‘Specific comparison’ and make sure ‘control’ versus ‘LPS’ are selected. Click the ‘Submit’  

button. The process may take ~10 s to complete.
 (iii)  Set the cutoffs for differentially expressed gene selection. Set the adjusted P value cutoff to 0.05 and the log2 FC  

cutoff to 1.0, enter the result name ‘LPS’ and then click ‘Submit’. The message indicates that 206 differentially  
expressed genes were identified.

 (iv)  Retain the same study design, and change the comparison to ‘control’ versus ‘LPS_LPS’. Click ‘Submit’.
 (v)  Use the same cutoff and ‘LPS2’ for the result name, and then click ‘Submit’. The message indicates that 135 DE genes 

were identified.
 (vi) Retain the same study design, and update the comparison to ‘LPS’ versus ‘LPS_LPS’. Click ‘Submit’.
 (vii)  Use the same cutoff and ‘LPS_LPS2’ for the result name, and then click ‘Submit’. The message indicates that  

236 differentially expressed genes were identified.

Figure 5 | Screenshot of the interface for differential expression analysis. NetworkAnalyst provides an interface that allows complex study designs and flexible 
comparisons. The results of each analysis (shown at the top right) will be available for visual analysis further downstream. The screenshot shows the result 
generated in Step 34 using example data set 2. 
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(B) performing comparisons  
considering the donor effect
 (i)  Under ‘Study design’, for  

metadata of interest, select 
‘Treatment’ as the primary  
condition of interest, and  
‘Donor’ for the secondary. Make sure that ‘this is a blocking factor’ is checked because we do not want to analyze  
the donor effect as an independent experimental factor but to account for the effect of donor variability in the  
experimental results. Click the ‘Submit’ button. This function estimates the correlation between repeated observations 
on the blocking variable. The process may take ~1 min to complete.

 (ii) Repeat Steps 34A(ii–vii), making sure that for each result you assign a unique name (e.g., add a suffix ‘_D’).

35| When complete, the view should look similar to Figure 5. Detailed result tables are available on the right. We can 
clearly see that when considering the donor effect more differentially expressed genes are identified. This is because the 
model fits the study design better and leads to greater statistical power.

36| (Optional) Click each result name to download the corresponding analysis results for future reference.

37| Click the ‘Proceed’ button on the bottom of the page.

38| Using chord diagrams to compare the results. On the following page, locate the ‘Chord diagrams’ row and click the  
adjacent ‘Proceed’ button. A dialog box will appear asking which results you want to include. Keep all results from the  
model considering the donor effect (names that end with ‘_D’) checked, and click ‘OK’.
 On the page that appears, the chord diagram is located at the center, surrounded by supporting tools and tables.  
An example screenshot is shown in Figure 6. The arcs of the diagram circle represent the individual results, and the  
chords connecting them represent their shared genes. Refer to Box 3 for more details on how to interpret chord diagrams. 
Use the supporting tools and tables to explore the chord diagram, using option A to see an overview of shared genes,  
option B to obtain the shared gene lists, option C for enrichment analysis, option D to view enriched functions or option E 
to perform flexible comparisons.
(a) overview of shared genes
 (i)  Mouse over the LPS_D arc. Those chords representing differentially expressed genes that are shared between LPS_D  

and any other data sets will be highlighted in dark green. By moving the mouse over different arcs, we can clearly  
see that LPS_LPS2_D contains most of the genes from the other two data sets. It also has a significant proportion  
of unique differentially expressed genes.

(B) obtaining the shared gene lists
 (i)  Click the LPS_D arc to compare its differentially expressed genes with those from the other data sets. The result is 

shown in the left panel. Genes that are shared with other data sets are listed under the corresponding name of the 
data set. Genes that are unique to the LPS_D data set are listed under the LPS_D header. Clicking the name of a  
shared gene will highlight the corresponding chord on the diagram.

(c) enrichment analysis
 (i)  The gene lists are available for enrichment analysis in the right panel. Choose ‘LPS_LPS2_D’, retain KEGG as the database 

and then click ‘Submit.’ The result shows the enriched pathways in the genes shared between LPS_D and LPS_LPS2_D.
(D) View enriched functions
 (i)  Click the top enriched pathway ‘Cytokine-cytokine receptor interaction’. The corresponding chords will be  

highlighted on the chord diagram between the two arcs. In addition, all of the contributing genes are listed in the 
bottom right panel.

Data
Comparisons

Enrichment
analysis

Figure 6 | A chord diagram comparing six 
analysis results. The chord diagram displays the 
shared differentially expressed genes (chords) 
among six related analysis results (arcs). Clicking 
on the arcs will display shared genes on the top 
left. The data comparison on the bottom left 
allows more advanced and flexible comparisons. 
The resulting gene lists can be used for 
enrichment analysis on the right. The screenshot 
is generated in Step 38 using example data set 2. 
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(e) performing flexible comparisons using the tools on the bottom-left panel
 (i)  Compute intersection. To search for overlapping genes among all the data sets, set operation to ‘Intersection’.  

Make sure all data sets are selected, and click ‘Calculate’. The returned gene list contains the genes shared among 
all three data sets. Mouse over the gene names to view the highlighted chords on the diagram. Select the gene list, 
copy and paste it to a spreadsheet and save it as a text file (‘Overlapped_genes.txt’). These are the core genes whose 
expressions change significantly in each stage of the treatments. These genes are potential biomarkers. Note that  
this gene list is also available for enrichment analysis under the name ‘Current result.’

 (ii)  Compute differences. We can easily compare the differences between differentially expressed genes obtained with  
and without accounting for donor effect in our design model. Previously, we saw that when donor variability is  
considered we obtained a few more differentially expressed genes. We can further investigate that here. Click ‘Visual 
Mode’ from the history track to go to the previous page, and click the ‘Proceed’ button on the ‘Chord Diagrams’ row 
again. This time, we will keep all available results checked, and click ‘OK’. In the new diagram (Fig. 6), select the  
‘LPS’ and ‘LPS_D’ data sets from the ‘Data Comparisons’ panel on the bottom left. Choose ‘Difference’ as the operation, 
make sure that ‘LPS’ is set as the reference and then click ‘Calculate’. The results pane shows ‘null’, which means that 
all of the genes in the LPS data set are also in the LPS_D data set (that LPS is a subset of LPS_D). Now, set LPS_D as 
the reference, and click ‘Calculate’. A list of seven genes is returned. Select, copy and paste these into a spreadsheet 
and save the gene list as ‘LPSD_LPS.txt’. 
 crItIcal step To calculate the unique genes in a particular list, you need to specify it as the ‘Reference’. For other  
operations, this option is ignored.

39| Using heatmaps to visualize expression profiles. Click on ‘Visual Mode’ on the history track again to return to the  
previous page. Click the ‘Proceed’ button corresponding to the ‘Interactive Heatmaps’ row. A dialog box will appear asking 
which data set you would like to view. In this case, choose ‘LPS_D’ and click ‘OK’ to proceed. On the new page, there are 
three columns. The left one shows the heatmap with low resolution for overview purpose. The middle column is the Focus 
View, which displays the expression profile for genes of interest in higher resolution. The right column contains tools and  
tables for enrichment analysis. The top menu bar contains various supporting functions (Fig. 7). Use the supporting tools 
and tables to explore the heatmap, using option A to browse, option B to cluster genes, option C to cluster samples,  
option D to select a region of interest, option E for functional profiling, option F to create a custom signature or option G to  
build custom heatmaps.
(a) Browsing heatmaps
 (i)  Move the mouse over the heatmap. The panel in the top right corner will display gene annotation information  

corresponding to the gene to which the mouse is pointing, as well as the P values from the DEA. The two  
metadata labels (Treatment and Donor) are also provided at the top of the heatmap. Move the mouse cursor  
over each row to see the labels for different colors. The bottom of the middle Focus View shows sample labels  
for each column.

(B) clustering genes
 (i)  By default, genes are ranked by their P values. Click the drop-down menu to select ‘Euclidean distance’ to cluster  

the genes on the basis of their Euclidean distance to each other. Note that genes will be reorganized in both the  
Overview and Focus View.

(c) clustering samples
 (i)  The samples are ordered from left to right according to the Donor by default. Double-click on ‘Treatment’ row to sort 

the samples accordingly. Alternatively, users can use the ‘Cluster samples’ option on the top menu bar.
(D) selecting a region of interest
 (i)  There are many distinctive patterns in the overview pane. For instance, the top one-third of the overview heatmap 

shows the cluster of genes that are suppressed after LPS treatment (as revealed by the dark blue color corresponding 
to the LPS group). Drag to select this region. The genes will show up in the central Focus View.

(e) Functional profiling
 (i)  To identify whether there is a primary functional theme among the selected differentially expressed genes, we  

can apply enrichment analysis. In the Enrichment Analysis pane on the right side, set the query to ‘Genes in  
Focus View’, choose KEGG and then click Submit. The results do not show any pathway that explains a large  
number of the genes in the Focus View. Set the database to ‘GO:BP’, and click ‘Submit’. The results show some  
enriched functions containing over ten genes. The top one is ‘inflammatory response’, which contains 11 genes.  
Double-click the row to display only the 11 genes in the Focus View. Click ‘Reset view’ to go back to  
the default.
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(F) creating a custom signature
 (i)  The panel on the bottom right allows you to easily create a custom heatmap from a given gene list. Click the  

‘Define Custom Signatures’ tab to bring up the panel. Open the file ‘Overlapped_genes.txt’ that we saved before.  
Copy and paste the gene names into the text area. Click ‘Submit’. The expression profile of these genes is now shown in 
the Focus View. These genes show distinctive patterns in each of the treatment stages.

(G) Building custom heatmaps
 (i)  This enables the creation of a heatmap showing the expression patterns of the differentially expressed genes involved 

in ‘Cytokine-cytokine receptor interaction’. In the enrichment analysis panel to the right, set the database to KEGG  
and query to ‘Genes in Overview’. Next, Click ‘Submit’.

 (ii)  Double-click on the ‘Cytokine-cytokine receptor interaction pathway’ row. The corresponding 22 genes now appear  
in the Focus View.

 (iii)  Click the ‘Builder’ icon on the top menu bar. The Builder view will show up below the Focus View.
 (iv)  Drag and select all genes in the Focus View to copy these genes down to the Builder view. Within the Builder  

view, you can manually drag a row to a new position, double-click to delete a row or insert blank rows for further 
customization.

 (v) Download the ‘Custom heatmap’ using the download option on the top menu bar.

40| (Optional) Click ‘Visual Mode’ to go back, and choose other data sets to explore their expression profiles  
using heatmaps.

Figure 7 | Visual analytics with heatmaps. This screenshot shows the overall arrangement of the heatmap visualization interface. The Overview on the  
left-hand side displays the overall gene expression pattern. Users can drag to select genes from any region of interest. The Focus View in the center displays 
the current genes of interest. The Enrichment analysis panel on the right side allows users to perform enrichment analysis on genes displayed in either the 
Overview or Focus View panel. The toolbar at the top of the screen provides functions that are commonly used during heatmap visualization. This screenshot  
is generated in Step 39 using example data set 2.
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Meta-analysis of multiple gene expression data sets
41| Starting up. Click the ‘Home’ icon to return to the home page, and then click ‘Click here to start analysis’. Locate  
‘Multiple gene expression datasets’ and click the ‘Proceed’ button within the panel.

42| Data preparation. The data preparation page allows users to upload and prepare multiple data sets. NetworkAnalyst  
provides a table-based navigation approach with columns corresponding to data processing steps including Data Upload,  
ID Conversion, Annotation, Visualization, Normalization, DE Analysis and Data Summary (Fig. 8). Adding a new row to the 
table will allow the user to upload a new data set. Clicking on a cell within each row will bring up a dialog box that will 
guide users to complete the processing steps on the corresponding data set. The procedures for data preparation on  
individual data sets are almost identical to the Steps 31–34. The main difference is that, when dealing with multiple data 
sets, the DEA is restricted to two-group comparisons for a single metadata parameter. This is because the results will become 
extremely difficult to interpret when multiple metadata parameters and multiple data sets are considered simultaneously. 
More importantly, when combining more data, the bias (such as the donor effect owing to small sample size) will be reduced 
or eliminated. Unzip the ‘colon_cancer.zip’ file downloaded during the Equipment Setup. There are three text files—dataset1.
txt, dataset2.txt and dataset3.txt. In this example, we will only show how to process one of these data sets, and then use 
the three example data sets that have already been prepared, as described in Steps 43–51.

43| Click the ‘Upload’ cell in the first row; in the data upload dialog box, click ‘Choose File’ to locate the first example file  
for meta-analysis ‘dataset1.txt’ and click ‘Submit’.

44| When the data are uploaded, click the ‘Process’ cell under the ‘Data Conversion’ header. In the new dialog box,  
select ‘H. sapiens (human)’ as the organism type and ‘Affymetrix Human Genome U133plus2 (hgu133plus2)’ as the platform. 
Click ‘Process’ to perform ID conversion from probe ID to Entrez gene ID. Click ‘Done’ to close the dialog box when the  
conversion is complete.

45| Click the ‘Annotate’ cell to bring up the dialog box. Users can edit metadata labels to make sure that they are consistent 
across different data sets. In this case, click ‘Submit’ to accept the default.

46| Click the ‘View’ cell under the ‘Visualization’ header to see summary plots for this data set. From the box plots, we  
can see that the data are already on a log scale. From the PCA plots, we can see that all except two samples are clustered 
together.

47| Click the ‘Normalize’ cell under the ‘Normalization’ header to bring up the dialog box. Set the data type to ‘Microarray 
data (intensities)’ and choose ‘quantile normalization only’, and then click ‘Submit’.

48| (Optional) Click ‘View’ cell again to check the normalization results. We can see that all samples now have identical 
distributions in the box plot and that all samples are well clustered together in the PCA plot.

Figure 8 | Upload and process multiple data sets for meta-analysis. This screenshot shows the interface with a table-based navigation panel to allow users to 
upload and process multiple data sets for meta-analysis, with table columns corresponding to data processing procedures and table rows corresponding to data 
sets. Clicking on a table cell will trigger a dialog box to guide users through each step. This screenshot is generated in Step 53 using example data set 3.
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49| Click the ‘Analyze’ cell under the ‘DE Analysis’ header. The dialog box allows users to perform two-group DEA within a 
single metadata parameter. As our data only contain two groups and a single metadata parameter, click ‘Submit’ to use the 
default values. The result shows 14 differentially expressed genes and 372 non–differentially expressed genes based on  
the 0.05 P value cutoff. Click ‘Done’ to close the dialog box.

50| Click ‘View’ cell under the ‘Data Summary’ header to see a summary of processed data so far.
 crItIcal step This dialog contains an option to ‘Set conditions in meta-analysis.’ When there are multiple groups  
present in the data, users must specify which two groups will be compared in the meta-analysis. Users must also make sure 
that these two groups are labeled consistently across all data sets included.

51| Click ‘Done’ to close the dialog. The first data set is now ready.

52| (Optional) Repeat Steps 43–51 to prepare dataset2.txt and dataset3.txt.

53| Instead of executing Step 52, however, we can use the preloaded example data sets. Click ‘Try Examples’ to bring up  
the dialog, and click ‘Yes’ to perform the default analysis procedures. The process will take ~30 s. A message will appear  
indicating that the three data sets were processed successfully. A corresponding screenshot is shown in Figure 8.

54| Click the ‘Proceed’ button on the bottom of the page. A dialog box will show up indicating that the uploaded data sets 
have passed the integrity check. Click ‘Next’.
 crItIcal step During the integrity check, NetworkAnalyst will inspect each individual data set to make sure  
that the metadata parameters are consistent across all data sets and a significant number of overlapping genes can  
be identified.
? trouBlesHootInG

55| Statistical meta-analysis. The meta-analysis page shows five common approaches for meta-analysis. Please refer to Box 4 
for more details about these methods. In this case, we will choose the widely used P value combination method. As all data 
sets are from the same platform with no missing values, we can use Stouffer’s method to give more weight to P values based 
on a larger sample size. Keep the P value cutoff at the default (0.05). Click ‘Next’.

56| (Optional) When data sets are from different platforms or of different qualities, Fisher’s method for P value combination 
should be preferred. The effect size combination is also a valid option in this case. When data sets are very heterogeneous, 
the nonparametric method (i.e., rank-based combination) should also be considered. Users need to be aware that  
nonparametric approaches generally have less statistical power.
? trouBlesHootInG

57| The differentially expressed genes identified from the meta-analysis are displayed in a table on the new page. You can 
click the ‘View’ button (right-hand column) for genes of interest to get a box plot summary of the gene expression patterns 
within each individual data set.

58| Click the ‘Visual Exploration’ button at the bottom of the page. On the ‘Visual Mode’ page, all three visual analytics tools 
are enabled. Before we proceed, it is important to save a copy of the current session file. Click ‘Save Current Session’ to 
download the session file.
! cautIon The session file contains only the information that is necessary for visual analytics. It is assumed that the data 
preparation and meta-analysis stages are complete. Thus, when resuming from the saved session file, users will not be able to 
return to the previous data preparation steps. The session file is stored in a special format for NetworkAnalyst to understand. 
Users should not modify this file.

59| Subnetwork analysis. On the ‘Visual Mode’ page, click the ‘Proceed’ button in the Network Analysis row. In the  
popup dialog box, make sure that the ‘InnateDB Interactome’ and ‘meta_dat’ are selected. Click ‘OK’ to enter the Network 
Builder page.

60| The top network created by default procedures contains 1,665 nodes and 2,252 edges. Click ‘Proceed’ to view  
this network.
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61| Network overview and module analysis. In the network visualization page, we can see a very dense network displayed in 
the center. Direct visual exploration is thus not a good idea, as it will yield a ‘hairball’ of overlapping edges and nodes  
in which it is very difficult to visualize any individual features or interactions. At this stage, we can perform network or  
module analysis using either a connection-first approach (option A) or a function-first approach (option B) to focus on  
small modules of interest.
(a) connection-first approach
 (i)  Perform a connection-first approach for module analysis, as described in Steps 21–29. The top module is very  

significant (P value, 2.4 × 10−14), and it contains 23 seed nodes. Extract the top module and perform enrichment 
analysis using KEGG. We can clearly see that this module contains many genes involved in various cancer pathways.

(B) Function-first approach
 (i)  Reload subnetwork1 and apply the function-first module analysis described in Steps 15–20 to create a module  

consisting of genes that are involved in cancer pathways. The above two modules are of similar size and biological 
contents, suggesting that the main functional theme of this network is captured.

62| Using ‘Trim’ to explore minimum interaction network. This approach will reduce both the size and complexity of the 
resulting network, while still maintaining the connectivity among the seed genes (see Box 2 for more details). Click ‘Network 
Builder’ to go back to the previous page, and click the ‘Trim’ button. The top subnetwork now contains 342 nodes and  
790 edges, about one-third the size of the default network. Next, click ‘Proceed’.

63| The new subnetwork is much more amenable to visual exploration. Now, use the ‘Function Explorer’ to perform KEGG 
pathway enrichment analysis on this trimmed network. Indeed, the ‘Pathways in cancer’ is at the top of the returned list of 
enriched pathways.

64| Customize the subnetwork as described in Step 13 and save the result as a PNG or SVG image.

65| Visual analytics with a chord diagram. Click ‘Visual mode’ to go back to the corresponding page. Click ‘Proceed’ in the 
Chord Diagrams row. You can choose any combination (at least two) of the available data sets for comparative visual analysis 
using a chord diagram. Keep all data sets checked and click ‘OK’.

The chord diagram shows the overall pattern of differentially expressed genes identified from selected data sets and from 
the meta-analysis. Note to ensure that they are comparable; all differentially expressed genes are selected on the basis  
of the universal P value cutoff used during the meta-analysis. The P value cutoffs used during individual analyses are  
not applicable here.

66| Click on the arcs corresponding to any of the data sets to view their relationships.

67| Explore the enriched functions within a gene list of interest using the Enrichment Analysis panel, as described in  
Step 38C and Step 38D.

68| Use the functions in the bottom-left ‘Data Comparisons’ panel to calculate the differences between any data sets, or to 
compute the shared ‘core’ among all the data sets using the ‘Intersection’ option (Step 38E(i)).

69| Visual analytics with heatmaps. Click the ‘Visual Mode’ link on the history track to go back to the corresponding page.

70| Click the ‘Proceed’ button corresponding to the ‘Interactive Heatmaps’ view. A new dialog box will appear that will allow 
you to choose which data sets you want to include in your heatmap visualization. Keep all data sets checked. Click ‘OK’ to 
proceed. Note that the heatmaps are created from the differentially expressed genes selected during meta-analysis. When the 
heatmap is too large (owing to too many samples), you can use this dialog box to display only a subset of the data at a time 
to save space and for better performance.

71| On the new page, the heatmaps are displayed showing the expression patterns of genes across all three data sets.  
Follow the procedures described in Step 39A–G to explore the results.

? trouBlesHootInG
? Troubleshooting advice can be found in table 3.
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● tIMInG
The timing required for the steps of the protocol depends on the size of the data, the speed of Internet access, as well as  
the number of active users currently connected to the public web server. For the example data sets used for the protocols, 
most results should be returned in a few seconds when a user adjusts parameters. The most time-consuming part is visual 
analytics, where users can spend a long time interacting with the graphics and the server. An experienced user can execute 
this list of protocols in ~30 min. A novice user should be able to complete these protocols within ~90 min.

antIcIpateD results
Graphical output
The graphical outputs produced during the analysis procedures are given in Figures 3–7. Please note that some  
NetworkAnalyst algorithms including network layout algorithms use time-dependent random number generators, and thus 
results may vary slightly among runs.

network builder results generated in step 9 using example data set 1
Four subnetworks are identified as the default first-order interaction subnetworks. The top one (subnetwork1) contains  
916 nodes (including 85 seeds) and 1,118 edges.

Meta-analysis of a single gene expression data set generated in step 34 using example data set 2
The number of differentially expressed genes for analysis without considering donor effect are as follows: LPS (206), LPS2 
(135) and LPS_LPS2 (236), and the number of genes for analysis with donor effect are: LPS_D (215), LPS2_D (153) and 
LPS_LPS2_D (251).

Meta-analysis of multiple gene expression data sets generated in step 57 using example data set 3
A total of 154 differentially expressed genes should be identified using the Stouffer’s method for combining P values using 
the default 0.05 P value cutoff.

taBle 3 | Troubleshooting table.

step problem possible reason solution

1 The content  
of the home 
page does not 
show up

JavaScript is 
disabled in your 
browser

For Google Chrome, go to the Chrome menu > Preferences > Privacy > Content  
Settings > JavaScript tab and choose the option ‘Allow all sites to run JavaScript’.  
For Mozilla Firefox 3.0+, go to the Tools > Options > Content, and then select the  
checkbox beside ‘Enable JavaScript’. For Safari 4.0+, go to the Edit > Preferences > 
Security, and then select the checkbox beside ‘Enable JavaScript’. Please check the  
documentation for other browsers on how to enable JavaScript

12 Browser is slow 
or freezes

CPU or memory is 
not sufficient

Use a computer equipped with better resources. We recommend 4 GB of RAM and  
an Intel Core i5/i7 processor or equivalent. If this is not possible, you can try the 
following: try to close other programs that are competing for resources; update the 
browser to the latest version (we recommend Google Chrome); and reduce the amount  
of the data to be visualized

54 Data integrity 
check failed

Class labels are not 
consistent. There 
are very few  
overlapping genes

Edit the class labels using the ‘Annotate’ functions; make sure that the ‘DE Analysis’ and 
‘Data Summary’ show the same class comparison. Exclude the data set(s) (in the case of 
very few overlapping features or with too many missing values)

56 Combining ranks 
failed

Data sets are  
too large for this 
procedure

Remove the data set that is most heterogeneous compared with others. Try a parametric 
approach that can deal with a reasonable amount of heterogeneity (i.e., REM for  
combining effect size). Install a local copy of NetworkAnalyst on a more powerful server
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