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Adherence to host cells is a crucial step by which bacteria initiate an infection but the bacterial
determinants of the process are, as yet, poorly understood. In an effort to identify bacterial adhesins
responsible for Pseudomonas aeruginosa binding to host cells, we identi®ed porin F (OprF) from the
outer membrane of P. aeruginosa as adhesin for human alveolar epithelial (A549) cells. Bacterial
adhesion assays with 35S-labeled wild type P. aeruginosa and its isogenic mutant strain lacking
OprF showed that the mutant strain binds 43% less than the wild type to A549 cells (P50.01). In
addition, bacterial binding is signi®cantly reduced (P5 0.01) when either A549 cells were pretreated
with puri®ed OprF or if bacteria were pre-incubated with a monoclonal antibody to OprF. Finally,
ligand binding experiments in which puri®ed OprF protein was added to A549 monolayers showed
saturable binding. These data indicate that OprF contributes to bacterial adherence to A549
epithelial cells and could facilitate Pseudomonas interactions with the epithelium, including
colonization of the airway epithelium or the initiation of pulmonary infection.

& 2002 Elsevier Science Ltd. All rights reserved.
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Introduction

Bacterial adherence to host cells is an essential
®rst step by which most pathogens initiate
infectious processes [1, 2]. While bacterial factors
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and host cell receptors that facilitate such
interactions are poorly understood, it appears
that the factors may vary depending on bacterial
strain and cell type. Cell surface appendages
and alginate of Pseudomonas aeruginosa function
as adhesins in bacterial interactions with host
cell in culture and, asialylated glycosphingo-
lipids are identi®ed as receptors for both pili and
¯agella [3±6]. Other investigators have shown
& 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Competition of puri®ed OprF with binding
of 35S-labeled P. aeruginosa to A549 cells. Pretreatment
of A549 cells with puri®ed OprF reduced bacterial
adherence to the cells grown in 24 well plates.
Likewise, pretreatment of bacteria with monoclonal
antibody to OprF reduced bacterial adhesion. Reduc-
tion in adherence by non-immune mouse IgG was
not statistically signi®cant. Values in each case
represent means+ SD of triplicate observations in
at least 3 independent experiments. Asterisks indi-
cate difference from control (P5 0.05).

Table 1. Adherence of wild type P. aeruginosa and its
isogenic OprF mutant to lung epithelial cells in
culture

P. aeruginosa strain % Adherencea

Primary type II
pneumocytes

A549 cells

Wild Type (H103) 13.6� 1 18.5� 5
OprFÿmutant (H636) 6.5� 2b 9.5� 1.5b

a Mean+ SD for triplicate wells in 3 independent assays.
b Signi®cant (P5 0.01).
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the existence of several classes of P. aeruginosa
adhesins that may be involved in bacterial
attachment to tracheobronchial mucin and
cell surfaces [7, 8]. Outer membrane protein
adhesins are also reported in some bacteria,
including E. coli intimin, Helicobacter AlpA and
Hope, Bartonella Omp43 [9±12]. In Pseudomonas
a variety of outer membrane adhesins have
been described, including ®bronectin-binding
proteins of 70, 60, 48, and 36 kDa, nitrogen
regulated proteins of 75, 62, 89, 38, 28, 18, and
12 kDa, and mucous-binding proteins of 48, 46,
28 and 25 kDa [13±15]. In addition, a root adhesin
from the outer membrane of P. ¯uorescens
displays a strong homology with P. aeruginosa
OprF [16]. In this communication, we provide
evidence that P. aeruginosa OprF is involved in
bacterial adherence to epithelial cells derived
from the lung.

The outer membrane of P. aeruginosa contains
a number of membrane-spanning b-barrel
proteins called porin [17±19]. These proteins
contribute to membrane barrier integrity and
can in¯uence passage of substrates and con-
sequently intrinsic resistance to antimicrobial
agents [20, 21]. Due to their conserved structure
among P. aeruginosa serogroups and their anti-
genic capacity, outer membrane proteins have
potential use in the development of vaccines
designed to prevent pseudomonal infections
[22±25]. We provide new evidence that con-
®rms a role for a speci®c P. aeruginosa outer
membrane protein; OprF, in host cell-bacterial
interactions.

Results

Adherence of P. aeruginosa
OprF-de®cient mutant
strain to A549 cells

Adherence of a wild type P. aeruginosa and its
isogenic mutant lacking the outer membrane
porin F was carried out using 35S-labeled bac-
teria and A549 cells grown on 24-well tissue
culture plates. As shown in Table 1, the wild
type P. aeruginosa (H103) was more adherent to
the target cells than the mutant strain H636. The
difference in adhesion between the two strains
was statistically signi®cant, demonstrating
that OprF contributes to bacterial adherence to
A549 cells.
Puri®ed OprF and mAb to OprF reduce
bacterial adherence to A549 cells
in culture

Pretreatment of the cells with exogenous OprF
prior to exposure to 35S-labeled P. aeruginosa
reduced bacterial binding to the monolayers
of A549 cells signi®cantly. OprF reduced bac-
terial adherence to A549 cells in a concentration
dependent fashion, as shown in Figure 1.
Pretreatment of bacterial culture with mAb
to OprF likewise interfered with bacterial
attachment to the cell monolayers in culture.



Figure 2. Binding of puri®ed OprF to A549 cells
grown in 96 well culture plates. Iodinated OprF
bound to the cells in a concentration related manner
and achieved a plateau at a concentration of 2.6 mM.
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Non-immune mouse IgG, however, did not alter
bacterial adherence to the cells. These data
demonstrate that the interaction of OprF with
binding sites on the A549 cell surface exhibits
speci®city.

Binding of 125I-OprF protein to
A549 cells

Iodinated OprF protein was next used to study
the binding properties of OprF to cell surface
receptor(s) on the A549 epithelial cells in RPMI
medium containing 0.5% BSA. We found that
OprF binds to A549 cells in a concentration-
dependent manner and that the binding begins
to plateau at a concentration of 2.6mM OprF
(Fig. 2). OprF in a concentration of greater than
2.6 mM (100mg/ml) caused cell detachment,
thereby hindering competition assays with
excess amounts of unlabeled OprF. Because
a relatively high concentration of OprF appears
to in¯uence cellular adhesion to plastic matrices,
we were unable to construct a speci®c binding
curve in order to calculate ligand-receptor
binding parameters.

Discussion

Adherence to host cell surfaces is an important
determinant of pathophysiologic bacterial func-
tions. This includes bacterial colonization and
cellular invasion that lead to onset of infection
and microbial dissemination to distant organs
[26, 27]. Bacterial adhesion is a multistep process
that requires cellular factors and bacterial com-
ponents such as pili, ¯agella, and exoproducts
[1, 2]. The cellular components integral to this
process are poorly understood at this time. Since
proteins in the outer envelope of other bacteria
mediate microbial attachment to host cells
[28, 29], we reasoned that P. aeruginosa outer
membrane proteins might likewise be involved
in adherence of this organism to lung epithelial
cells. The present data demonstrate, for the ®rst
time, that OprF, an outer membrane protein of
P. aeruginosa contributes to bacterial adherence
to lung epithelial cells. Pseudomonal OprF thus
appears to function as an adhesin similar to the
major outer membrane protein of Legionella
pneumophila or cell wall components of Strepto-
coccus pneumonia, as previously reported [28, 29].

Binding of radiolabeled OprF to A549 cell
monolayers shows clearly that this protein binds
to the cell surfaces in a concentration-dependent
manner. Although we were not able to perform
a direct competition assay with excess amount of
unlabeled OprF, a consistent saturable binding
pattern where an average of greater than 15% of
the added protein bound to the cells was always
observed. In addition, the functional assay data
reported here con®rm a competition pheno-
menon between OprF and adhering bacteria to
the target cells.

Other reports also indicate that porin proteins
from P. aeruginosa and other microorganisms
could be toxic and cause cell injury and apop-
tosis [30]. Non-toxic concentrations of porins,
however, cause production and release of pro-
in¯ammatory cytokines by a variety of cells
including endothelium, epithelia, and leuko-
cytes [17]. While we can not be certain of the
mechanism by which high concentrations of
OprF effects cellular dissociation from a plastic
matrix, we speculate that the known effects of
OprF on cellular toxicity and signaling are likely
responsible for the observed effects. We must
emphasize that the endotoxin contamination of
the OprF was less than 10 pg/ml as assayed by
Limulus amebocyte tests, so the antiadhesive
effect was not likely attributable to endotoxin.
Our data, however, clearly implicate OprF in
Pseudomonas-epithelial cell adhesion and sug-
gest that this adhesin may carry broader func-
tionality that could in¯uence receptor-mediated
alterations in epithelial cell interactions with
their microenvironment.

To con®rm our ®nding that OprF functions as
an adhesin in bacterial binding to A549 cells, we
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used a bacterial adhesion assay that measures
binding of radiolabeled bacteria to cell mono-
layers in tissues culture plates. Mutant bacterial
strains lacking OprF protein adhered less to the
cells than the wild type strain indicating that
OprF contributes, in part, to bacterial adherence.
Furthermore, puri®ed OprF and a monoclonal
antibody to an extracellular domain of OprF [31]
reduced binding of the wild type P. aeruginosa to
A549 cell monolayers. Similar ®ndings have
been reported with other porin proteins from
L. pneumophila and cell wall components of
S. pneumonias [28, 29]. The fact that OprF alone
does not completely block bacterial adhesion
suggests that other proteins, perhaps including
bacterial components such as ¯agella and pili,
participate in bacterial binding as previously
reported by other investigators [6, 32]. We are in
the process of determining the relative contribu-
tion of each of these factors to bacterial adher-
ence using appropriate mutant strains lacking
two or more of these elements.

In conclusion, our ®ndings demonstrate that
OprF contributes to bacterial adherence to lung
epithelial cells in culture. Consistent with this,
an OprF homologue has been reported to be an
adhesin in P. ¯uorescens for attachment to plant
roots [16]. Our ®ndings demonstrate a novel
mechanism that promotes binding of P. aerugi-
nosa to the epithelium and suggest the potential
importance of these interactions to colonization
or initial stages of infections of the airway
epithelium with P. aeruginosa.

Materials and Methods

Cell culture and bacterial strains

We utilized established lines of human lung
epithelial cells (A549) from ATCC (Rockville,
MD, U.S.A.) as well as our own primary cultures
of rabbit lung type II epithelial cells in these
studies. Alveolar type II pneumocytes were
isolated from pathogen-free rabbits according
to our published method [33] and seeded on
24-well culture plates in a serum-free medium
(LHC-9; Bio¯uids, Rockville, MD, U.S.A.)
until use. A549 cells were routinely cultured on
T-75 tissue culture ¯asks (Costar, Cambridge,
MA, U.S.A.) in RMPI-1640 supplemented with
2 mM L-glutamine, 10% fetal calf serum, and 1%
antibiotic mixture (penicillin, 100 U/ml;
streptomycin, 100 U/ml; and fungizone,
250 ng/ml) from Sigma. For selected experi-
ments, A549 cells were grown to con¯uence on
24-well tissue culture plates. All cells were
maintained in a humidi®ed incubator at 37�C
in 5% CO2.

We used a wild type P. aeruginosa (H103) and
its isogenic protein F de®cient mutant strains
(H636) for comparison. The mutant strain H603
was constructed by O-cartridge insertion muta-
genesis from the wild type H103 strain [34].
Cultures were grown to late log phase in LB
broth with high or low salt content (Gibco RBL,
Rockville, MD, U.S.A.) at 37�C.

Isolation and puri®cation of OprF

Pseudomonas aeruginosa PAO1 were grown to an
OD600 of 0.8, harvested, and resuspended in
20 ml cold 20% sucrose in 10 mM Tris pH 8.0
(ICN Biomedicals, Inc. Aurora, OH, U.S.A.),
and 50 mg/ml deoxyribonuclease 1 (Amersham
Pharmacia biotech, Baie d'Urfe, Quebec,
Canada). The bacterial suspension was incu-
bated at room temperature for 15 min prior to
breaking the cells with a French press at
15,000 psi. The outer membrane was prepared
by a 2-step sucrose gradient of 50 and 60%
sucrose. The outer membrane was collected and
resuspended in Tris buffer containing 3.0%
Octyl-POE (BACHEM, King of Prussia, PA,
U.S.A.). The mixture was incubated for 1 h at
37�C prior to spinning at 41,000 rpm for 1 h. We
saved the supernatant while resuspended the
pellet in Tris buffer with 3.0% Octyl-POE and
10 mM EDTA disodium salt pH 8.0 (Fisher
Scienti®c, Vancouver, B.C. Canada and pro-
cessed as outlined above. The supernatant was
collected and resolved by a 12% SDS-PAGE
(BioRad Laboratories, Mississauga, ON,
Canada) to con®rm the presence of OprF. The
supernatant was then dialyzed in 0.6% Octyl-
POE, 10 mM Tris pH 8.0 and 10 mM EDTA
disodium salt pH 8.0. The supernatant was
run on a Pharmacia FPLC LCC 500 system
(Amersham Pharmacia Biotech, Baie d'Urfe,
Quebec, Canada) with MonoQ column. Proteins
were eluted with a NaCl gradient with OprF
eluting at 28% NaCl. The purity of the ®nal
preparation was con®rmed by SDS-PAGE
analysis of the fractions.

We used monoclonal antibodies speci®c
to surface epitopes of OprF as described
earlier [35].
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Bacterial adherence to epithelial cells
monolayers in culture

We studied the adherence of wild type and
different phenotypic mutants of P. aeruginosa to
monolayers of epithelial cells on a 24-well
culture plates according to our previously
published method [36]. For competition assays,
either A549 cells were pretreated with puri®ed
OprF or bacteria were pre-incubated with a
monoclonal antibody to OprF prior to adhesion
assay. Cultures of P. aeruginosa maintained for
18 hr in LB broth containing 35S-methionine
(10 mCi/ml) were microfuged at 10,000 rpm for
2 min and rinsed 3 times in order to remove
unbound label. The bacterial concentration was
measured by a spectrophotometer at OD600 and
necessary dilutions were made to obtain an
OD600 reading of 0.08. This dilution strategy
results in about 2±36 107 bacteria/ml as deter-
mined by colony counting on an agar plate.
Binding of P. aeruginosa to lung epithelial cells
was carried out on a 24-well culture plate in an
atmosphere of 5% CO2 and humidi®ed air for
2 h. Nonadherent bacteria were removed and the
cells were washed 3 times before they were lysed
with a mixture of SDS (2%) and NaOH (0.1%).
Samples were diluted in 5 ml Ecolite (ICN) and
radioactivity was then measured in a radiation
counter.

Binding of puri®ed OprF to epithelial
cells in culture

We radio-iodinated the OprF protein with
IODO-BEADS (Pierce, Rockford, IL, U.S.A.)
according to our previously published method
[26]. For binding assays, varying concentrations
of 125I-OprF were added to con¯uent cell mono-
layers of A549 cells grown on 96-well tissue
culture plates (Becton Dickinson, Lincoln Park,
NJ, U.S.A.). Binding was carried out for 90 min
at 37�C. Cells were then washed 3 times to
remove unbound proteins before adding lysis
buffer. The samples were then removed and
the radioactivity of the bound protein was
measured in a Gamma counter (Micromedia
systems, Horsham, PA, U.S.A.).

Statistical analyses

Bacterial adhesion data were analyzed using
ANOVA followed by an unpaired student's
t-test. A P value5 0.05 was accepted to indicate
statistical signi®cance.
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