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MexA-MexB-OprM is an efflux system in Pseudomonas aeruginosa. OprM overproduced from the cloned gene
was able to complement OprM-deficient mutants but did not alter the resistance of a wild-type P. aeruginosa
strain to the different antimicrobial agents tested. This suggests that OprM cannot function by itself to efflux
antibiotics, including b-lactams targeted to the periplasm.

Pseudomonas aeruginosa is well known for its intrinsic resis-
tance to various structurally unrelated antimicrobial agents
(29). This broad-spectrum resistance is largely due to the pos-
session of an outer membrane with relatively low permeability
(10, 22, 23, 32) coupled with secondary resistance mechanisms,
such as efflux (14–16, 23, 25, 29). The efflux operon mexA-
mexB-oprM has been identified in P. aeruginosa, and its prod-
ucts have been demonstrated to contribute to the high intrinsic
antibiotic resistance of this organism as well as lead to multiple
antibiotic resistance after overexpression in nalB mutants (7, 8,
18, 26–28). It has been suggested that the relatively hydrophilic
and often negatively charged b-lactams, which have targets in
the periplasm, can also be extruded directly from the periplasm
or from the surface of cytoplasmic membrane through this
system (16). Therefore, it was of interest whether the outer
membrane component OprM could function independently. In
this study, we overproduced OprM in various P. aeruginosa
strains to investigate the role of OprM in efflux.

Two synthetic oligonucleotides were used to amplify oprM
from plasmid pPV20 (27) and to incorporate NdeI and HindIII
restriction sites at the 59 and 39 ends, respectively. The approx-
imately 1.5-kb fragment was first cloned into plasmid pT7-7
(30), and the gene, together with the ribosome binding site on
pT7-7, was then excised by XbaI and HindIII and ligated to
plasmid pVLT31 (17) to create pKPM-2. DNA sequencing
performed according to the protocols provided by Applied
Biosystems Inc. (Foster City, Calif.) confirmed the published
(27) sequence of the subcloned oprM gene. The control vector
pVLT31 and the construct pKPM-2 were transformed into
Escherichia coli DH5a, the P. aeruginosa wild-type strain H103
(laboratory collection), and two P. aeruginosa OprM-deficient
VHgr interposon mutants, K613 (27) and OCR03T (9). Ex-
pression of oprM from pKPM-2 was induced by isopropylthio-
b-D-galactoside (IPTG) and confirmed by Western immuno-
blotting (20, 24, 31) with a murine monoclonal antibody
against OprM. Surface exposure of OprM was also confirmed
in all clones expressing oprM by indirect immunofluorescence
by the method of Hofstra et al. (13). The fluorescence signal
from cells carrying pKPM-2 and induced by IPTG was the
strongest. The wild-type P. aeruginosa strain H103 and the
vector control strain H103/pVLT31 gave weak signals due to
OprM expressed from the chromosomal gene. However, ex-

cessive production of OprM from pKPM-2 seemed to be harm-
ful to cells, as revealed by growth studies. Cell densities of
strains carrying pKPM-2 started to decline after 2 h of induc-
tion with 0.1 or more mM IPTG (the results for strain K613/
pKPM-2 are shown in Fig. 1), at which point OprM was already
substantially overproduced, as shown by sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis (SDS-PAGE) of outer
membrane isolated as described previously (12). It is possible
that excess OprM perturbed the outer membrane and led to
cell lysis, as observed in the case of overexpression of a mutant
OmpA precursor protein in E. coli (5). A concentration of 0.05
mM IPTG led to no change in growth rate for at least 3 h and
a normal yield of cells after overnight growth at 37°C.

OprM was overproduced from cells carrying pKPM-2 and
induced with IPTG (Fig. 2A, lane 5; Fig. 2B, lane 6). Strain
H103/pKPM-2 produced significantly larger amounts of OprM
(Fig. 2B, lane 6) than the wild-type strain, H103; the vector
control strain H103/pVLT31 (Fig. 2B, lanes 1 through 4); and
the nalB mutant OCR1 (Fig. 2B, lane 7). OprM was previously
shown to be heat modifiable (6, 19). However, in this study we
observed that heating the protein samples from strains carrying
pKPM-2 in sample buffer alone did not give any noticeable
change in the intensities of the 100-kDa oligomer band of
OprM. Both the monomeric 50-kDa and the native oligomeric
100-kDa forms were associated with the outer membrane un-
der such conditions (Fig. 2A, lane 5; Fig. 3, lanes 1 to 3). Only
when b-mercaptoethanol was included did the 100-kDa band
shift to the 50-kDa monomeric form (as confirmed by two-
dimensional, unheated versus heated SDS-PAGE [data not
shown]), and this occurred even when solubilization was per-
formed at room temperature or 37°C (Fig. 3, lanes 4 and 5).
Many porins exist as oligomers in the outer membrane (2, 3,
11, 21). OprM might also exist as an oligomer in its native
form. Overproduction of OprM could have overwhelmed the
ability of the cell to correctly form the oligomer, or most
oligomers formed may have been less SDS stable. We presume
that those oligomers which formed were stabilized by disul-
phide bridges. In this regard, it should be noted that there are
three cysteine residues in the predicted amino acid sequence of
OprM.

Antibiotic susceptibilities of the various clones were studied
by broth microdilution assays in Mueller-Hinton broth by the
method described by Amsterdam (1). MICs of different anti-
microbial agents were determined after 20 to 22 h of incuba-
tion, and controls demonstrated that the growth of cells car-
rying pKPM-2 was not inhibited by 0.05 mM IPTG. As shown
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in Table 1, overproduction of OprM in the two OprM-deficient
strains led to complementation of their mutations. Tetracy-
cline resistance was the selective marker on pVLT31; thus,
strains carrying pVLT31 or pKPM-2 were highly resistant to
tetracycline. The MICs of some antibiotics for control vector
strains K613/pVLT31 and OCR03T/pVLT31 were increased
compared to the MICs of those antibiotics for the OprM-
deficient parents of those strains. This is possibly due to the tet
gene on pVLT31 or the requirement to include tetracycline to
maintain the plasmids in growing bacteria to seed the MIC
plates. Nevertheless, when comparing isogenic strains with the
oprM-expressing plasmid or with the vector plasmid alone,
complementation was observed. Most interestingly, overpro-
ducing OprM from the cloned gene in the wild-type P. aerugi-
nosa PAO strain H103 did not alter the MICs of any of the
antibiotics tested. Without IPTG induction, H103/pKPM-2
gave MIC results similar to those obtained by IPTG induction
(data not shown). This indicated that OprM cannot function
independently as an antibiotic efflux channel. In strains K613
and OCR03T, only the most distal gene, oprM, of the operon
was interrupted and mexA and mexB could still be expressed.
Thus, OprM produced from pKPM-2 could function with these
MexA and MexB molecules to complement the OprM defi-
ciency. The excess molecules of OprM produced in these
pKPM-2-containing strains might not be able to function prop-
erly, since there would be too little MexA and MexB available
to reconstruct additional complete efflux systems (assuming
that the efflux systems involved stoichiometric amounts of the
three components). Consistent with this view, there are small
amounts of MexA, MexB, and OprM produced in the wild-type
PAO strain H103 which assemble into an efflux apparatus and
contribute to intrinsic antibiotic resistance (27). The lack of

influence of OprM overexpression in strain H103 is consistent
with the explanation that extra copies of OprM expressed from
pKPM-2 would presumably not have any MexA and MexB
molecules available to form additional efflux complexes. This
would explain why, in this genetic background, there was no

FIG. 1. Growth of P. aeruginosa strain K613/pKPM-2 in Luria-Bertani me-
dium induced with different concentrations of IPTG.

FIG. 2. SDS-PAGE of outer membrane proteins. (A) Samples from E. coli
DH5a/pVLT31 (lanes 2 and 3) and DH5a/pKPM-2 (lanes 4 and 5) heated
without b-mercaptoethanol in sample buffer. Molecular mass standards are
shown in lane 1 and are as follows: phosphorylase B, 94 kDa; bovine serum
albumin, 67 kDa; ovalbumin, 43 kDa; and carbonic anhydrase, 30 kDa. (B)
Samples from P. aeruginosa H103 (lanes 1 and 2), H103/pVLT31 (lanes 3 and 4),
H103/pKPM-2 (lanes 5 and 6), OprM-overproducing strain OCR1 (lane 7), and
OprM-deficient strain K613 (lane 8). b-Mercaptoethanol (10% [vol/vol]) was
included in the sample buffer. Molecular masses are indicated on the left. 2,
samples from cultures without IPTG induction; 1, samples from cultures with
0.05 mM IPTG induction. Position of OprM is shown by arrowheads on the right.

FIG. 3. SDS-PAGE of outer membrane proteins from strain H103/pKPM-2
induced with 0.05 mM IPTG. b-Mercaptoethanol (10% [vol/vol]) was included in
the sample buffer in lanes 4, 5, and 6. After mixing with the sample buffer, the
samples in lanes 1 and 4 were left at room temperature, the samples in lanes 2
and 5 were left at 37°C for 10 min, and the samples in lanes 3 and 6 were heated
at 100°C for 10 min before being loaded onto the wells. Molecular masses are
indicated on the left. The positions of the 50-kDa and 100-kDa OprM forms are
shown by arrowheads on the right.
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significant change in antibiotic susceptibility. OprM was also
overproduced in an E. coli tolC mutant strain (4) and its parent
strain AG100. There was no significant difference in their an-
tibiotic susceptibilities (data not shown), indicating that OprM
cannot replace TolC.

Our results do not provide concrete proof that OprM re-
quired MexA and MexB to function properly. However, these
results indicated that OprM cannot function independently.
Interestingly, a P. aeruginosa tonB homolog was recently
cloned, and preliminary data indicated that drug resistance
mediated by the mexAB-oprM operon might be TonB depen-
dent (33). Perhaps the energy-dependent resistance to b-lac-
tams mediated through this system is dependent on TonB as
well. Alternatively, one of the other systems known to influ-
ence b-lactam susceptibility, including inducible b-lactamase
and penicillin binding proteins, may be influential.
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