Analysis of two gene regions involved in the expression of the imipenem-specific, outer membrane porin protein OprD of Pseudomonas aeruginosa

Hongin Huang, Richard J. Siehnel, Francis Bellido, Eilcen Rawling and Robert E.W. Hancock
Department of Microhiology. Unutersity of British Cohumbia, Vancour er, B.C., Canada

Received 14 July 1492
Accepted 20 July 1992
Key words: Outer membrane protein; OprD: Pseudomonas aeruginosa; Gene expression

I. SUMMARY

A Tn501 mutant of Pseldomonas aenuginosa resistant to imipenem and lacking the imipenemspecific outer membrane porin protein OprD was isole: :ed. The mutation could be complemented to imirenem susceptit:ity and OprD-sufficiency by a cloned 6 kb Ecoti-Pstl fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn 501 insertion. However, this fragment did not contain the oprD struetural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N -terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn 501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn 501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted

[^0]a hydrophobic protein of $M_{1} 41592$. Using the above-mentioned oligonueleotide, the oprD structural gene was cloned and expressed in Es. cherichia coli on a $2.1-\mathrm{kb}$ BamHI-Kpml fragment. DNA sequencing predieted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.

2. INTRODUCTION

Imipenem is a new broad spectrum carbapenem β-lactam antibiotic that is highly active against Pseadomonas aeruginosa [1]. However, during clinical therapy of P. aeruginosa, imi-penem-resistant isolates arise at a significant rate [2]. The major cause of resistance is loss of a specific outer membrane protein OprD (formerly called D2) [2,3]. Interestingly, oprD mutants are not cross-resistant to other classes of β-lactam antibiotics. Instead resistance is limited to the zwitterionic carbapenem antibiotics [2,4]. This was explained by Trias, Nikaido and colleagues [4-6] who demonstrated that OprD was an imipenemand basic amino acid-specific, channel-forming
protein, by virtue of its possession of a specific binding site in its channel.

In this communication, we have cloned and sequenced two sets of sequences which influence the expression of the oprD gene. One of these has been shown to be the oprD gene. Some of the data described here were originally presented in outline at the American Society of Microbiology Annual Mecting, 1990 (Abstract No. D-40).

3. MATERIALS AND METHODS

3.1. Bacterial strains and media

P. acruginosa PA01 strain H103 [7] was used as the wild-type strain and source of wild-type DNA. Strain H673 was isolated by transposon mutagenesis with Tn501, as previously described [7], and selection for resistance to $50 \mu \mathrm{~g} \mathrm{ml}^{-1}$ mercuric chloride and $8 \mu \mathrm{~g} \mathrm{ml}^{-1}$ imipenem. Escherichia coli DH ${ }^{\alpha} \alpha^{\alpha}$ (BRL, Bethesda, MD) was used as the host strain for cloning experiments. OprD was expressed in E. coli strain CE1248 [8]; a strain with mutations preventing the production of porins $\mathrm{OmpF}, \mathrm{OmpC}$ (due to an ompB mutation), and PhoE. Luria broth (1% Bacto-tryptone, 0.5\% yeast extract), containing $1 \% \mathrm{NaCl}$ for E. coli, was used as the liquid medium, and, when solidified with 2% Bacto-agar, was used as the solid medium.

3.2. Cloning of the opdE gene

In general, DNA procedures followed the protocols outlined by Sambrook et al. [9] with modifications described previously [10]. Chromosomal DNA was isolated from P. aeruginosa strain H673 and the Tn501 and flanking DNA was cloned as a 11.5-kb PstI fragment into pTZI8R (USB, Cleveland, OH) to create plasmid pER1, using the method described previously [7]. A $2.7-\mathrm{kb}$ Pst1-EcoRI fragment from pER1, comprising P. aeruginosa DNA flanking Tn501, was used as a hybridization probe to clone a $4.8-\mathrm{kb}$ EcoRl fragment from the wild-type P. acruginosa strain H103 into plasmid p TZ18R to create plasmid pD2-29. This fragment, when subcloned into the mobilizable vector pRK 767 [11] to create plasmid pD218E, failed to complement the mutation in H 673.

B.

Fig. I. Restriction endonuclease maps of P. aeruginosa PA01 strain Hl03 chromosomal DNA derived by Southern hybridizations as described in matrikials and metions. (A) Map of the region surrounding the insertion site of Tn 501 (marked by the solid triangle) in strain H673. (B) Map of the region surrounding the oprD gene. Asterisks indieate restriction sites discovered hy DNA sequencing only. Thick bars indicate DNA cloned in pD2-45 (A) and pBK-19R (B).

Therefore a I.8-kb Pst I fragment overlapping the left-hand EcoRI site (Fig. 1A) was cloned from P. acruginosa into plasmid $\mathrm{pD} 2-18 \mathrm{E}$, to create plasmid pD2-45.

3.3. Cloning of the oprD gene

OprD was partially purified from P. aeraginosa PA01 strain H103 grown in BM2 minimal medium containing succinate as a carbon source, using the protocol previously described for protein D1 [12]. The protein was separated by SDS polyacrylamide gel electrophoresis (SDS-PAGE [12]), transferred to Immobilon paper and amino terminal sequenced by Sandy Kielland, University of Victoria, Canada [7] to yield the sequence D A FVSDQAEAKGFIEDS. Taking into account codon bias in Pseudomonas aeruginosa, a corresponding 29 -mer oligonucleotide pool was deduced from amino acids 6-15. This was then radiolabelled with ${ }^{32} \mathrm{P}$ and used in a Southern hybridization analysis of P. acruginosa PA 01
chromosomal DNA that had been singly or pairwise digested with several restriction endonucleases, following previously described protocols [7,9]. A 2.1-kb KpnI-BamHI fragment was cloned, in both orientations relative to the lac promoter, into pTZ18R and pTZ19R to create plasmids pBK18R (inverse orientation) and pBK19R (correct orientation). A 4-kb EcoRI fragment was cloned in both orientations into pTZ18R to create plasmids pE37 (correct orientation) and pE65 (inverse orientation).

3.4. Sequencing and other assays

DNA sequencing utilized an Applied Biosystems Incorporated (ABI) (Foster City, CA) automated fluorescence sequenator and dye terminator chemistry as detailed in protocols from ABI. Both strands were sequenced using either timed exonuclease 111 digestions (Erase-a-base, Promega, Madison, WI) to create ordered deletions (for the oprD gene) or a combination of subcloning and building of oligonucleotide primers (for the opdR gene region) as detailed previously [9,13]. Outer membranes [8,12] and cell envelope proteins [13,14] were isolated as previously described. SDS-PAGE [12] was performed as described previously. Antibiotic minimal inhibitory concentrations (MIC) were determined by the agar dilution method [2].

4. RESULTS

In an attempt to mutagenize the oprD gene, strain H673 opdE::Tn501 was isolated as detailed in materials and methodd. The miC of imipenem for H 673 was $12 \mu \mathrm{~g} \mathrm{ml}^{-1}$, whereas the MIC for the parent strain H103 was $1.5 \mu \mathrm{~g} \mathrm{ml}^{-1}$, and SDS-PAGE of outer membranes revealed that H673 was OprD-deficient (Fig. 2, lane 2). MICs of ceftazidime ($0.3 \mu \mathrm{~g} \mathrm{ml}^{-1}$) and norfloxacin ($1.5 \mu \mathrm{~g} \mathrm{ml}^{-1}$) were unaltered by the mutation in strain H673. Therefore the region of the chromosome equivalent to that surrounding the transposon insertion site was cloned from the parent strain H103 into the vector pRK767, to create plasmid pD2-18E containing a $4.8-\mathrm{kb}$ EcoRI fragment. and plasmid pD2-45 containing

Fig. 2. SDS polyacrylamide gel electrophoretograms demonstrating the mutagenesis and cloning of DNA segments influencing the expressing of OprD. The banding pesition of OprD is shown by arrowheads. Lanes 1-4. P. aeruginasa outer membranes. The predominant bands under OprD are in descending order OprE. OprF, OprG and OprL. Lames 6-12, E. coli outer membranes. Lane 1. strain H103: lane 2. strain H673 ondR::Tn 501: lane 3, H673/pRK767: lane 4. H673/pD2-45: lane 5. standards with M_{r} values of $\left.94(0) 0\right)$. 67000), 43000, 30000 and 20000. Lane 6, CE1248; lane 7. CE124K/DTZ1KR: lanes 8 . 9. CE1248/pBKI9R: lane 10 . CE1248/pTZI9R; lane 11. CE1248/pBKI8R: lane 12. CE1243/pE37. IPTG was added to all E. coli cultures to induce expression from the lac promoter.
an overlapping 6-kb EcoRI-Pst I fragment. When mobilized back into strain H673 by triparental mating, pD2-45 was able to complement this strain to imipenem susceptibility (MIC $=1.5 \mu \mathrm{~g}$ ml^{-1}) and OprD sufficiency (Fig. 2, lane 4) whereas H673 (pD2-18E) and the vector plasmid containing strain H 673 (pRK 767) remained imipenem-resistant ($\mathrm{MIC}=12 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$) and OprD-deficient (Fig. 2, lane 3). In no case was ceftazidime or norfloxacin susceptibility affected.

It was at first assumed that the oprD gene had been cloned. However, sequencing of 3931 bp of DNA surrounding the site of transposon inscrtion in strain H673 failed to reveal a sequence corresponding to the N -terminal amino acid sequence of OprD , and no open reading frame equivalent to an outer membrane protein (i.e. containing a signal sequence) was predicted. In addition, no new protein bands were observed in E. coli, containing plasmid pD2-45. Furthermore an oligonucleotide specific for the N -terminal sequence failed to hybridize to plasmid pD2-45 and indeed hybridized with sequences in the P. aeruginosa chromosome with an entirely different restriction pattern (cf. Fig. 1, maps A and B).

```
CMATTCCTCTTCGGGGAGCCAGGCGATTCCCAGCCCCGCCAGCGCGGCATCCACGATATTCGGCGAGGTGTTGMAMATGMGCTGTCCATCGACACGGACGTTCACGTGTCG 111
```



```
ATCTTTCCGСTEМНАTCCCAGGCATACAGGCCGCCGCCGGACTGCATGCGCATGTTGATGCAGTTGTGGTCGACCAGATCGCGAGGACTCCTGGGCTTLGGATGTGCCGC 222
```



```
ММGTAGGCCEGEGCCGCEACGACCGCCATGCGCACTGGCGGCCCMATCGGCACGGLGATCATGTCCTTGTCTATGGTGTCGCCCAGGCGTACGCCGGCATCGMACCGGTC 333
```



```
GECCACGATGTCCGGANGGCATAGTTGATGTCGMAGTCCAGCTTGATGTGTGGATATTCCMGCAGCRAGGGGGTGAGCGTGGGTAGCMACAGGGTTCGCTGGATGTEATC 4&S
```



```
GCCACAGGTMATGCGALCCGTGCCACTTGGTTTGTCGCGCAGCGCCGACAGCTCGTCCAGTTCCGCCTCGATCTCGTCGAASCGATTGCCGATGGCATTCRACAGGCECTC 555
    G C T I R V T G S P K O R L A S L E D L E A E I I E D F % N G I A M L L R E
CCCTGCCECCGTGEGCGMUAGGTGCGEGTGGTGCGGGTGAGTANGCGGATCTGCAGGCGCGCCTCCAGGCEGCTTATCGACTEGCTCMATGCCGACTGCGTCACGCCCAG 666
```



```
TTGGGGGCGGСАСGGGTGMEGTTCCCTCGCGGGCGACEGCMACGNGGACMGGAGGTCGTTGNGGTTACGTTTGATCATGGCCMATTCTTCCACGGACCATTAATTAGT 7:?
@ A A A R T F T G E R A V A V F S L L DNLLNKRKI N <---- ORF 3
```



```
CCGACTCAGCCCAGGLGTTTGTCACCAGCGGAGCTGATCTCTTCTTTTCACTCTTTGGATAMGCCGGITTTTTCATGACAACCCGCGCACTCGATACCGCCAMCGAMUACC و99
                                    OPdE ----> N T T T R A L O T A A N E N
СTGAACMATGGGGСTCCTGGAGTGGCGTCCTEGCCATTGCGGTTTGCGCCTTCGCACTGGTCGCGTCEGAGTTCCTGCCGGTCAGCCTGCTGACTCCCATCGCCMACGACC 111D
PE O S G S N S G V L A I A V C A F A L V A S E F L P V S L L T P I A N D
TGGGMACTACCGAGGGCATGGCAGGCCAGGGCATCGCCATCTCCGECGCCTTCGCCGTTTTAACCAGCCTGTTCATTTCATCCGTTGCCGGCAGCCTGAACCGCMAGACEC 1221
LGGT T E G M A G O G I A l S G A F A V L T S L F I S S V A G S L N M K T
TETGGCTGGGACTGACGGCGGCAATGGGCATGTCCGGCGCMATCGTCGCGCTCGCGCCAMACTATTTCGTCTACATGCTGGGCCGGGCGCTGATCGGCATAGTEATCGGCG 1332
```



```
GCTTCTGGTCGATGTCGGCAGCCACGGCCATGCGCCTEGTGCCTGCCMACGACGTGCCGCGAGCCCTGGCCCTCGTCMATGGCGGCMACGCTCTGGCGACAGTGGTGGCCG 143
```



```
A PLLG A NLLG
TGCEGGCCGGCGCGCGTGCTCCCGGCCCEGGCMATGTGTTCACGGTATTCGCTCTGCTCANGCGTCCCGGTGTGATGCTCGGCATGCTCGCCAGCAGCCTGTTCTTCATEG 1665
M R A G A R A P G P G N V F T V F A L L K R P O V M L G M L A S S L F F F M
GCCAGTTTTCCCTGTTCACCTATGTGCGACCATTCCTGGAGACGGTCACCGGGGTACATGGCGCGCATGTTTCGCTEGTACTECTGGTGATCGGTGCAGGGGGCTTTATCG 1776
G O F S L F T Y V R P F L E T V T G V H G A H V F S L V L L L V I G A A A G
GCACCCTGCTGATCGACCGEGTTCTGCMACGGCGCTTCTTCCAGACACTGGTCGCCATCCCGTTGCTGATGOCCCTEATCGCCCTEGTACTGACGGTCCTTGGCEGCTGEC 18S7
GTLLLLI O R V L O R R F F O T L V A I P L L M A L L I A L V L T V V L G G
CCGCCATCGTTGTCGTCCTGCTCGGATTGTGGGGACTGACCGGTACCTCEGCCCCCGTCGGTTGGTGGGCCTGGATCGCCAGGGTGTTCLCAGAGGACGCCGMAGCCEGTG 19%%
```



```
TGCTGCTGATGGCMGCGTTCCTGACCATCCTCACGGCACGCTGGMUGGCCCGGCCGGCTAGACCCCGGGNOCGCCCGGACGCGACTTGCCTCGCGCCECAGGCCAGGTCG 222O
M L L I A A F L T I L T A R S K A P A G *
TCGAGCCGMATCCCACCACGTCGATCTGATCGATGGAGAACGCCATGGNAACCAMGCACMGCMATCGNGCTCGCTCTCCCANGEGTGCCCTGMGGGGCBCAGTCCTTGCCG 2339
                        ORF 2 ---M H E N A H E T K H S S N R A R S P P K G A L R G A V L L A
GTGCGCTGATGGCTCTCGTCGGCTGCCAGACCAGTCCGGCGGCMCGACTTCGTCAMACACCGGAGGMGCCMACATGCAGCTGCMATTGACCCACGMGTGEGACMGGCCT 242
```



```
FPLLSAKKV E H P K V T F A N R Y G I T L A A O L Y L P K N R G G D R L
COGCMATCGTGATCGGCGGTCCGTTCGGCGCGGTCAMCGAGCAGTCCTCCGGAGTGTATGCGCMAACCATGGCCGMAGGCGATTCGTCACGCTGGCGTTCGACCCATCGT 266L 
```



```
E R I G V I G I C G U G G M A L N A V A V D K R V K A V V V S T M M Y D M T
```


Fig. 3. Nucleotide sequence and predicted open reading frames of the sequence surrounding the transposon insertion site from H673 (indicated by an arrowhead after nucleotide 1243). The sequence is oriented in the same direction as the map given in Fig. 1A, and goes from the leftmost EcoRI site to the third PstI site (at 5.5 kb in Fig. IA). ORF 3' was on the complimentary strand and began at base 747. read to the left and proceeded beyond the beginning of this sequence (no ston codon was encountered).

These sequence data will appear in the EMBL data library under accession number Z14064.

$$
\begin{aligned}
& \text { ATCAGCCGLCCTACAACGAACTGAGGGTEGTGAGGACAGTTCCTCGTCGACTACCACGACTACTACATGACACCCCGTGGCTACCACCCGCGECAGTCAACTCCEGTA З10S }
\end{aligned}
$$

ACGCCTGGACGATGACCACGCCGCTGTCGTTCATGALATGCCGATCCTCACCTACATCAAGGAGATCTCGCCACGCCCGATCCTGTTAATCCACGCCCMNCECCCCATT 3219
CACGGTACTTCAGCGACAGCGCCTACGCCGCTGCCGCMGAGCCMANGGGGTGCTGATGGTTCGEGGAGCCAGTCATGTCGACCTGTACGACCEECTGEACMOGATTCCTT 3330
TCGATCGEATTGCCGEATTCTTCGACGAGCATCTGTMGCGTC6TGCACGCCAGGGCAACAGCGCCEGGAGATTGATTCEGCCCECTCCCCCGCGTCCTGTCECCEACCTCT 34G9
F D I I A G F F D E HL
ATCCECMATGGGTTGCCATCCTTCAGCGCTTCLGGCASCMACGCGTCCGGGTAGTTCTSGTAGCACACCEGGCGCAGGMAACEGTGGATGACCAGCGTGCCCACCCNOGTA 3663 CCGCGEGCGTCCGAAGTGACCGEGTACEGCCCACLGTGGACCATCGCGTCGCAGACTTCCACACCEGTCGEGTAGCCGTTGAGCMGCAGGCGTCCTECCTTCTGTTCCAGG 3774
 ACCTCGACGACCACGCTGGCCEEGCCGTTGACTTCTTCCTGCAG
$3 \% 2$
Fig. 3 (continued).

The DNA sequenced (Fig. 3) predicted four large open reading frames, three of which had a codon usage typical of P. aeruginosa genes ($>$ $80 \% \mathbf{G}+\mathrm{C}$ in position 3 of codons). One of these open reading frames overlapped the region of transposon insertion in P. aeruginosa strain Hó73 and was thus named opdE (for putative regulator of OprD expression). This open reading frame was 402 amino acids long with a predicted $M_{\text {r }}$ value of 41592 . The sequence was quite hydrophobic with 61.3% non-polar amino acids (A, I, L, M, F, P, W, V), 29.4% uncharged amino acids ($\mathrm{N}, \mathrm{C}, \mathrm{Q}, \mathrm{G}, \mathrm{S}, \mathrm{T}, \mathrm{Y}$) and only 34 charged residues. All secondary structure prediction methods used suggested that this protein was an integral membrane protcin containing as many as 12 membrane spanning α-helices. Only 85 nucleotides after the end of the opdE gene, another large open reading frame (1110 bp , predicted to encode a 370 amino acid protein) was predicted, whereas a third open reading frame of greater than 747 bp (predicted by single-stranded sequencing past the EcoRI site to be 978 bp in length) was predicted to be encoded by the complementary strand. These sequences, called orf2 and orf3 (Fig. 1), might also be involved in OprD expression since no obvious terminator appears between opdE and orf2, suggesting a potential operon structure, whereas the divergently transcribed orf 3 contained DNA required to complement the transposon mutation in H 673 , based on the above complementation studies. A screen of
the EMBL Swiss pro database failed to reveal genes homologous to any of these three reading frames.

The oprD gene was cloned as a sequence homologous to an N -terminal-specific oligonucleotide probe. A 2.1-kb Kpnl-BamHI fragment cloned in plasmid pBK 19 R in the same orientation as the lac promoter revealed expression in E. coli of a cell envelope protein migrating with the same mobility as OprD (Fig. 2, lanes 8, 9). When cloned in the inverse orientation to the lac promoter in pBK18R (Fig. 2, lane 11), only weak expression was observed. Strong expression was almost certainly driven by the lac promoter since it was isopropylthiogalactoside-inducible (data not shown). The vector controls (Fig. 2, lanes 7 and 10), plasmidless contro! (Fig. 2, lane 6) or plasmids pE37 (Fig. 2, lane 12) or pE65 containing a 4-kb EcoRl insert (that proved not to contain the entire gene) did not result in production of a band of equivalent M_{r} to OprD.

The $2.1-\mathrm{kb}$ KpnI-BamHI fragment containing oprD was sequenced (Fig. 4). Within this fragment, a 443 amino acid protein was predicted. Amino acids 24-40 were identical in sequence to the N -terminal sequence obtained from the purified protein, whereas the first 23 amino acids had features typical of a bacterial signal sequence. The 420 -amino acid sequence of the mature protein predicted certain typical features observed for other outer membrane proteins including overall negative charge and a typical [13] hy-
drophobicity plot with alternating hydrophobic and hydrophilic stretches. However, less typical was the large number of stretches of uncharged amino acids [14], with 10 stretches of between 9 and 15 amino acids in length. An attempt was
made to match the putative OprD sequence to other outer membranc protein sequences obtained from P. acruginosa $[9,13,15]$ and to the OmpF and TolC porins from E. coll [14], using the method of Neddleman and Wunsch [16] as
opro

 GATEGEACATGCGTCATGCAATTTTGCGACAGCACGGTAAAGAATCCGTCGCTTCGGAACCTCAACTATCGCCAMCAMACACTGCGTGCTATAAGTTAGCGCCGACAAGAMG GTZ AACTAGCCGTCACTGCGGCACTGTGATGGCAGAGATAATTTCAMAACCAAAGGAGCAATCACA ATG MM GTG ATG AAG TGG AGC GGC ATT GCA CTG GCG $7 T 1$
 GTT TCC GCA GGT AGC ACT CAG TTC GCC GTG GCC GAC GCA TTC GTC AGC GAT CAG GCC GAA GCG AMG GEG TTC ATC GAL GAC AEC BS5

Fig. 4. Nucleotide sequence and predicted protein sequence of the DNA region including the oprD gene. The sequence is oriented in the same direction as the map in Fig. 1B and goes from the BamHI site to the rightmost Kiml site. The sequence corresponding to the N -terminal sequence determined from the mature protein is underlined. The end of the leader peptide is denoted by a vertical line. A typical Shine-Dalgarno sequence appears between nucleotides 72.3 - 726 while a predicted terminator stem-kop appears between nucleotides 2084 and 2112 (underlined with a dashed broken line). These sequence data will appear in the EMBL data library under accession number Z141/65.
implemented by Dayhoff [17] with a bias parameter of 0 and a gap penalty of 4 with 10 random runs. The alignment scores obtained were 1.4, $-0.5,1.4,2.6$ and 1.1 for OprF. OprH. OprP and E. coli OmpF and TolC, respectively. None of these scores were considered significant above three standard deviations.

5. DISCUSSION

In this communication, we have described two sequences that influence the expression of OprD in Pseudomonas aenuginosa. One of these is the oprD gene itself. Although the cloning of this gene and its ability to complement mutants in P. aeruginosa has been reported [18], no restriction map or nucleic acid sequence has appeared in the literature as yet. Interestingly, the mature OprD sequence has insignificant homology with the known P. aenuginosa outer membrane protein sequences including the general porin OprF [9], the phosphate-specific porin OprP [13] and the $\mathbf{M g}^{2+}$-regulated protein OprH [15] or with two other porins from E. coli.

Our data also indicate a second gene region involved in OprD expression in that inactivation of this region by transposon mutagenesis eliminated OprD expression (Fig. 1). Analysis of the nucleic acid sequence revealed a long open reading frame, named here the opdE gene, and two adjacent open reading frames. We hypothesize that the opdE gene, and possibly one or two of the other open reading frames, encodes a protein that influences the expression of OprD. We can not, at this stage, state how expression is influenced but possibilities include transcriptional, translational or post-translational regulation. In keeping with this hypothesis, the oprD gene was expressed poorly from its own promoter in E. coli, in contrast to the non-regulated oprF gene, but similar to the regulated oprP [13] and oprH genes [14]. In addition, it is known that the level of OprD observed in the outer membrane is influenced strongly by the growth medium and carbon source [12]. However, the exact function of the coding regions indicated in Fig. 3 will only be determined by further studies.

ACKNOWLEDGEMENTS

This work was financially supportec by the Medical Rescarch Council of Canada and its early stages by the B.C. Health Care Research Foundation. E.R. atid F.B. were the recipients of a Canadian Cystic Fibrosis Summer Studentship and Postdoctoral Fellowship, respectively. Howard Meadows isolated the original mutant H673.

REFERENCES

[1] Wise, R. (1986) Antimicrob. Agents Chemother. 31, 343349.
[2] Ounn. J.P.. Dudeck. E.J., Divincenzo. C.A., Lucks, D.A. and I.erner, S.A. (1986) J. Infect. Dis. 154, 289-294.
[.3] Lynch. M.J.. Drusino. G.L. and Mohley. H.L. (1987) Antimicrob. Agents Chemother 51, I892-1896.
!4] Trias. J.. Dufresne. J.. Levesque. R.C. and Nikaido, H. (1989) Antimicreh. Agents Chemother. 33, 1201-120\%.
[5] Trias, J. and Nikaido. H. (IO9)) Antimicroh. Agents Chemother. 34. 52-57.
[6] Trias. J. and Nikaido. H. (1990) J. Biol. Chem. 265. 156*1)-15684.
[7] Worobec, E.A.. Siehnel. R.J., Gladman, P. and Hancock, R.E.W. (1988) FEMS Microbiol. Lett. 52. 235-238.
[K$]$ Hancock. R.E.W.. Egli. C.. Benz. R. and Siehnel. R.J. (1992) J. Bacteriol. 174, 471-476.
[9] Sambriok. J.. Fritsch. E.F. and Maniatis. T. (1989) Molecular Cloning: A Laboratory Manual. Ind edn.. Cold Spring Harbor Laboratory, Cold Spring Harhor, NY.
[10] Ullstrom. C.A.. Siehnel. R.J.. Wondruff. W.A.. Steinhach, S. and Ilancock, R.E.W. (1991) J. Bacteriol. 173. 768-775.
[11] Ditta. G.. Schmidhauser, T.. Yakobson, E., Lu. P.. Liang. X.W., Finlay, D.R., Gruney, D. and Helinski. D.R. (1985) Plasmid 13, 149-153.
[12] Hancock. R.E.W. and Carcy. A.M. (1980) FEMS Microhiol. Lett. 8. I05-109.
[13] Siehnel. R.J., Martin. N.L. and Hancock. R.E.W. (1990) Mol. Microbiol. 4. 831-838.
[14] Mizuno, T.. Chou. M.Y. and Inouyc, M.A. (1983) J. Biol. Chem. 25, 6932-6940.
[15] Bell. A. and Hancock. R.E.W. (1989) J. Bacteriol. 171. 3211-3217.
[16] Needteman. S.B. and Wunsch, C.D. (1970) J. Mol. Biol. 48. 443-453.
[17] Dayhoff, O. (1978) Atlas of Protein Sequence and Structure. Vol. 5. Suppl. 3.. National Biomedical Rescarch Foundation. Washington. D.C.
[18] Yoneyama, H. and Nakae. T. (1991) FEBS Lett. 283. 177-179.

[^0]: Correspondence to: R.E.W. Hancock, Department of Microbiology, University of British Columhia. Vancouver. British Columbia, Canada V6T IZ3.

